Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{2x-1}=\sqrt{5}\)
ĐK : \(x\ge\frac{1}{2}\)
Bình phương hai vế
pt <=> \(2x-1=25\)
<=> \(2x=26\)
<=> \(x=13\left(tm\right)\)
Vậy S = { 13 }
b) \(\sqrt{4-5x}=12\)
ĐK : \(x\le\frac{4}{5}\)
Bình phương hai vế
pt <=> \(4-5x=144\)
<=> \(-5x=140\)
<=> \(x=-28\left(tm\right)\)
Vậy S = { -28 }
c) \(\sqrt{x^2+6x+9}=3x-1\)< chắc hẳn là như này :]>
<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)
<=> \(\left|x+3\right|=3x-1\)
<=> \(\orbr{\begin{cases}x+3=3x-1\left(x\ge-3\right)\\-3-x=3x-1\left(x< -3\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\x=-\frac{1}{2}\left(ktm\right)\end{cases}}\)
Vậy S = { 2 }
d) \(2\sqrt{x}\le\sqrt{10}\)
ĐK : \(x\ge0\)
Bình phương hai vế
bpt <=> \(4x\le10\)
<=> \(x\le\frac{10}{4}\)
Kết hợp với ĐK => Nghiệm của bất phương trình là \(0\le x\le\frac{10}{4}\)
a) \(ĐKXĐ:x\ge\frac{1}{2}\)
\(\sqrt{2x-1}=\sqrt{5}\)\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x-1=5\)\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=3\)
b) \(ĐKXĐ:x\le\frac{4}{5}\)
\(\sqrt{4-5x}=12\)\(\Leftrightarrow4-5x=144\)( bình phương 2 vế )
\(\Leftrightarrow5x=-140\)\(\Leftrightarrow x=-28\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=-28\)
c) \(ĐKXĐ:x\ge\frac{1}{3}\)
\(\sqrt{x^2+6x+9}=3x-1\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)
\(\Leftrightarrow\left|x+3\right|=3x-1\)
+) TH1: Nếu \(x+3< 0\)\(\Leftrightarrow x< -3\)
thì \(\left|x+3\right|=-\left(x+3\right)=-x-3\)
\(\Rightarrow-x-3=3x-1\)\(\Leftrightarrow4x=-2\)
\(\Leftrightarrow x=\frac{-1}{2}\)( không thỏa mãn ĐKXĐ )
+) TH2: \(x+3\ge0\)\(\Rightarrow x\ge-3\)
thì \(\left|x+3\right|=x+3\)
\(\Rightarrow x+3=3x-1\)\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=2\)
Dễ thấy: \(x^2+2x+2>0;x^2-2x+3>0\)
\(\Rightarrow bpt\Leftrightarrow\left(\sqrt{x^2+2x+2}\right)^2>\left(\sqrt{x^2-2x+3}\right)^2\)
\(\Leftrightarrow x^2+2x+2>x^2-2x+3\)
\(\Leftrightarrow4x>1\Leftrightarrow x>\frac{1}{4}\)
Vậy nghiệm của bpt là \(T=\left(\frac{1}{4};+\infty\right)\)
a) \(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\) (đk: \(x\ge0\))
\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)
\(\Leftrightarrow-2\sqrt{x}+4\sqrt{x}=6\)
\(\Leftrightarrow2\sqrt{x}=6\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow\sqrt{x}=\sqrt{9}\)
\(\Leftrightarrow x=9\)(tmđk)
vậy nghiệm của phtrinh là x = 9
a) ĐK: \(0\le x\le\frac{\sqrt{5}+1}{2}\)
\(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x}-1\)
\(\Leftrightarrow1-\sqrt{x^2-x}=\left(\sqrt{x}-1\right)^2\left(x\ge1\right)\)
\(\Leftrightarrow1-\sqrt{x^2-x}=x-2\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x\left(x-1\right)}=2\sqrt{x}-x\)
\(\Leftrightarrow\sqrt{x\left(x-1\right)}=\sqrt{x}\left(2-\sqrt{x}\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x-1}+\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x-1}+\sqrt{x}-2=0\end{cases}}\)
TH1: x = 0 (Loại)
TH2: \(\sqrt{x-1}+\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x-1}=2-\sqrt{x}\)
\(\Leftrightarrow x-1=4-4\sqrt{x}+x\left(x\le4\right)\)
\(\Leftrightarrow4\sqrt{x}=5\Leftrightarrow\sqrt{x}=\frac{5}{4}\Leftrightarrow x=\frac{25}{16}\left(tm\right)\)
b) \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK: \(x\ge1\)
\(pt\Leftrightarrow\sqrt{\left(x+1\right)\left(2x+6\right)}+\sqrt{\left(x+1\right)\left(x-1\right)}=2\left(x+1\right)\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2x+6}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{2x+6}+\sqrt{x-1}-2\sqrt{x+1}=0\end{cases}}\)
TH1: \(\sqrt{x+1}=0\Leftrightarrow x=-1\left(l\right)\)
TH2: \(\sqrt{2x+6}=2\sqrt{x+1}-\sqrt{x-1}\)
\(\Leftrightarrow2x+6=4\left(x+1\right)+\left(x-1\right)-4\sqrt{x^2-1}\)
\(\Leftrightarrow2x+6=5x+3-4\sqrt{x^2-1}\)
\(\Leftrightarrow4\sqrt{x^2-1}=3x-3\Leftrightarrow16\left(x^2-1\right)=9x^2-18x+9\left(x\ge1\right)\)
\(\Leftrightarrow7x^2+18x-25=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-\frac{25}{7}\left(l\right)\end{cases}}\)
dk tu xd \(\sqrt{2x^2+8x+6}\) \(+\sqrt{x^2-1}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}-\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(2\sqrt{x+3}-\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
đến đây bn tự giải nhé
j kìa
x\(\in\left\{-\infty;2\frac{1}{2}-\frac{\sqrt{53}}{2}\right\}U\left\{\frac{\sqrt{53}}{2}+2\frac{1}{2};\infty\right\}\)
có bạn nào biết thì giải giúp nha , hic hic còn khảng 6 bài nữa ..........giúp nha mọi người