K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

Bỏ dấu giá trị tuyệt đối ở vế trái của bất phương trình ta có:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

 Bất phương trình đã cho tương đương với

Giải sách bài tập Toán 10 | Giải sbt Toán 10

 (Vô nghiệm)

    Vậy bất phương trình đã cho vô nghiệm.

25 tháng 2 2016

\(\frac{x}{2x-1}>\frac{x-1}{x+2}\Rightarrow\frac{x}{2x-1}-\frac{x-1}{x+2}>0\Rightarrow\frac{-x^2+5x-1}{\left(2x-1\right)\left(x+2\right)}>0\)

x  \(-\infty\)         -2              \(\frac{5-\sqrt{21}}{2}\)                \(\frac{1}{2}\)                  \(\frac{5+\sqrt{21}}{2}\)              \(+\infty\)                      
-x2 + 5x - 1           -              -            0           +                 +            0              - 
2x - 1          -               -                          -        0        +                           +
x + 2           -        0      +                      +                   +                            +

=> VT :                -        //      +         0           -          //        +            0              -

Vậy \(S=\left(-2;\frac{5-\sqrt{21}}{2}\right)\cup\left(\frac{1}{2};\frac{5+\sqrt{21}}{2}\right)\)

25 tháng 2 2016

\(\frac{x}{2x-1}>\frac{x-1}{x+2}\)   (1)

\(\Leftrightarrow\)  \(\frac{\left(2x-1\right)\left(x-1\right)-x\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}<0\)

\(\Leftrightarrow\)  \(\frac{x^2-5x+1}{2x^2+3x-2}<0\)  (a)

Xét các trường hợp

- Nếu \(2x^2+3x-2<0\)  hay là \(x\in\left(-2;\frac{1}{2}\right)\)  := (*) thì (a) \(\Leftrightarrow\) \(x^2-5x+1>0\)

\(\Leftrightarrow\)\(x<\frac{5-\sqrt{21}}{2}\)  hoặc \(\frac{5-\sqrt{21}}{2}\)< x

Kết hợp với điều kiện \(x\in\) (*) ta được -2<x<\(\frac{5-\sqrt{21}}{2}\)

- Nếu \(2x^2+3x-2>0\) hay \(x\in\left(-\infty;-2\right)\cup\left(\frac{1}{2};+\infty\right)\) : = (* *) 

thì (1) \(\Leftrightarrow\) \(x^2-5x+1<0\) \(\Leftrightarrow\) \(\frac{5-\sqrt{21}}{2}\)<x<\(\frac{5+\sqrt{21}}{2}\)

Kết hợp với điều kiện x\(\in\)(* * ) ta được \(\frac{1}{2}\)<x<\(\frac{5+\sqrt{21}}{2}\)

Tóm lại : 

(1) có nghiệm -2<x<\(\frac{5-\sqrt{21}}{2}\) hoặc  \(\frac{1}{2}\)<x<\(\frac{5+\sqrt{21}}{2}\)

 

29 tháng 12 2015
  
  
  

 

30 tháng 12 2015

1488

28 tháng 4 2020

ĐK: \(\hept{\begin{cases}1-\frac{2}{x}\ge0\\2x-\frac{8}{x}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x-2}{x}\ge0\\\frac{2x^2-8}{x}\ge0\end{cases}}\)

<=> \(-2\le x< 0\) hoặc  \(x\ge2\)

TH1:  \(-2\le x< 0\)

Bất phương trình đúng

TH2: \(x\ge2\)(@@)

bất pt <=> \(2\sqrt{\frac{x-2}{x}}+\sqrt{\frac{2\left(x-2\right)\left(x+2\right)}{x}}\ge x\)

<=> \(\sqrt{\frac{x-2}{x}}\left(2+\sqrt{2\left(x+2\right)}\right)\ge x\)

<=> \(\sqrt{\frac{x-2}{x}}\left(\frac{2x}{\sqrt{2\left(x+2\right)}-2}\right)\ge x\)

<=> \(2\sqrt{\frac{x-2}{x}}+2\ge\sqrt{2\left(x+2\right)}\)

<=> \(4\left(1-\frac{2}{x}\right)+4+8\sqrt{1-\frac{2}{x}}\ge2x+4\)

<=> \(4\sqrt{1-\frac{2}{x}}\ge x-2+\frac{4}{x}\)

<=> \(16\left(1-\frac{2}{x}\right)\ge x^2+4+\frac{16}{x^2}-4x+8-\frac{16}{x}\)

<=> \(4\ge x^2+\frac{16}{x^2}-4x+\frac{16}{x}\)

<=> \(\left(x-\frac{4}{x}\right)^2-4\left(x-\frac{4}{x}\right)+4\le0\)

<=> \(\left(x-\frac{4}{x}+2\right)^2\le0\) vô nghiệm vì x > 2 => \(x-\frac{4}{x}+2>2\)

Vậy -2 \(\le\) x < 0

7 tháng 4 2017

\(\Leftrightarrow\left|2x-1\right|\le-1\)

VP >=0 mọi x

VT<0 => vô nghiệm

7 tháng 4 2017

\(x+2+\left|-2x+1\right|\le x+1\Leftrightarrow\left|2x-1\right|\le-1\)

Vế trái luôn >=0

Vế phải luôn <0

=> bất Phuong trình đã cho vô nghiệm

7 tháng 5 2016

Bất phương trình \(\Leftrightarrow9.9^{2x-x^2}-34.15^{2x-x^2}+25.25^{2x-x^2}\le0\)

                         \(\Leftrightarrow9\left(\frac{3}{5}\right)^{2\left(2x-x^2\right)}-34\left(\frac{3}{5}\right)^{2x-x^2}+25\le0\)

Đặt \(t=\left(\frac{3}{5}\right)^{2x-x^2},t>0\)

Ta có bất phương trình :

\(9t^2-34t+25\Leftrightarrow1\le t\le\frac{25}{9}\)

\(\Rightarrow\begin{cases}\left(\frac{3}{5}\right)^{2x-x^2}\ge1\\\left(\frac{3}{5}\right)^{2x-x^2}\le\left(\frac{3}{5}\right)^{-2}\end{cases}\)

\(\Leftrightarrow\begin{cases}2x-x^2\le0\\x^2-2x-2\le0\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) và \(1-\sqrt{3}\le x\le1+\sqrt{3}\)

Vậy tập nghiệm của bất phương trình là :

\(S=\left[1-\sqrt{3};0\right]\cup\left[2;1+\sqrt{3}\right]\)

9 tháng 5 2016

Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :

Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)

- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)

- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)

                                                                 \(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm

Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )

 

7 tháng 5 2016

Ta thấy rằng nếu x = 1 là nghiệm của bất phương trình :

- Nếu \(x>1\Rightarrow x+2< 2x+1\)  thì :

\(2^{x+2}< 2^{2x+1};3^{x+2}< 3^{2x+1}\Rightarrow2^{x+2}+3^{x+2}< 2^{2x+1}+3^{2x+1}\) thỏa mãn đề bài

- Nếu x <1 thì bất đẳng thức ở trên đổi chiều và không thỏa mãn với đề bài

Kết luận bất phương trình đã cho có nghiệm là \(x\ge1\)

7 tháng 4 2017

a) <=>

<=>

<=> 6(3x + 1) - 4(x - 2) - 3(1 - 2x) < 0

<=> 20x + 11 < 0

<=> 20x < - 11

<=> x <

b) <=> 2x2 + 5x – 3 – 3x + 1 ≤ x2 + 2x – 3 + x2 - 5

<=> 0x ≤ -6.

Vô nghiệm.

9 tháng 5 2016

\(\left(x^2-2x\right)^2-2\left(x-1\right)^2-1\ge0\)\(\Leftrightarrow\left(x^2-2x\right)^2-2\left(x^2-2x+1\right)-1\ge0\)

Đặt \(t=x^2-2x\), ta được \(t^2-2t-3\ge0\)

Bất phương trình này có nghiệm \(\left[\begin{array}{nghiempt}t\le-1\\t\ge3\end{array}\right.\)

Do đó \(\left(x^2-2x\right)^2-2\left(x-1\right)^2-1\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x^2-2x\le-1\\x^2-2x-3\ge0\end{array}\right.\)

                                                          \(\Leftrightarrow x=1\) hoặc \(x\le-1\) hoặc \(x\ge3\)

Vậy bất phương trình đã cho có tập nghiệm là 

S =(\(-\infty;-1\)\(\cup\left\{1\right\}\cup\) [3;\(+\infty\))