Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2x-1}>\frac{x-1}{x+2}\Rightarrow\frac{x}{2x-1}-\frac{x-1}{x+2}>0\Rightarrow\frac{-x^2+5x-1}{\left(2x-1\right)\left(x+2\right)}>0\)
x | \(-\infty\) -2 \(\frac{5-\sqrt{21}}{2}\) \(\frac{1}{2}\) \(\frac{5+\sqrt{21}}{2}\) \(+\infty\) |
-x2 + 5x - 1 | - - 0 + + 0 - |
2x - 1 | - - - 0 + + |
x + 2 | - 0 + + + + |
=> VT : - // + 0 - // + 0 -
Vậy \(S=\left(-2;\frac{5-\sqrt{21}}{2}\right)\cup\left(\frac{1}{2};\frac{5+\sqrt{21}}{2}\right)\)
\(\frac{x}{2x-1}>\frac{x-1}{x+2}\) (1)
\(\Leftrightarrow\) \(\frac{\left(2x-1\right)\left(x-1\right)-x\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}<0\)
\(\Leftrightarrow\) \(\frac{x^2-5x+1}{2x^2+3x-2}<0\) (a)
Xét các trường hợp
- Nếu \(2x^2+3x-2<0\) hay là \(x\in\left(-2;\frac{1}{2}\right)\) := (*) thì (a) \(\Leftrightarrow\) \(x^2-5x+1>0\)
\(\Leftrightarrow\)\(x<\frac{5-\sqrt{21}}{2}\) hoặc \(\frac{5-\sqrt{21}}{2}\)< x
Kết hợp với điều kiện \(x\in\) (*) ta được -2<x<\(\frac{5-\sqrt{21}}{2}\)
- Nếu \(2x^2+3x-2>0\) hay \(x\in\left(-\infty;-2\right)\cup\left(\frac{1}{2};+\infty\right)\) : = (* *)
thì (1) \(\Leftrightarrow\) \(x^2-5x+1<0\) \(\Leftrightarrow\) \(\frac{5-\sqrt{21}}{2}\)<x<\(\frac{5+\sqrt{21}}{2}\)
Kết hợp với điều kiện x\(\in\)(* * ) ta được \(\frac{1}{2}\)<x<\(\frac{5+\sqrt{21}}{2}\)
Tóm lại :
(1) có nghiệm -2<x<\(\frac{5-\sqrt{21}}{2}\) hoặc \(\frac{1}{2}\)<x<\(\frac{5+\sqrt{21}}{2}\)
ĐK: \(\hept{\begin{cases}1-\frac{2}{x}\ge0\\2x-\frac{8}{x}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x-2}{x}\ge0\\\frac{2x^2-8}{x}\ge0\end{cases}}\)
<=> \(-2\le x< 0\) hoặc \(x\ge2\)
TH1: \(-2\le x< 0\)
Bất phương trình đúng
TH2: \(x\ge2\)(@@)
bất pt <=> \(2\sqrt{\frac{x-2}{x}}+\sqrt{\frac{2\left(x-2\right)\left(x+2\right)}{x}}\ge x\)
<=> \(\sqrt{\frac{x-2}{x}}\left(2+\sqrt{2\left(x+2\right)}\right)\ge x\)
<=> \(\sqrt{\frac{x-2}{x}}\left(\frac{2x}{\sqrt{2\left(x+2\right)}-2}\right)\ge x\)
<=> \(2\sqrt{\frac{x-2}{x}}+2\ge\sqrt{2\left(x+2\right)}\)
<=> \(4\left(1-\frac{2}{x}\right)+4+8\sqrt{1-\frac{2}{x}}\ge2x+4\)
<=> \(4\sqrt{1-\frac{2}{x}}\ge x-2+\frac{4}{x}\)
<=> \(16\left(1-\frac{2}{x}\right)\ge x^2+4+\frac{16}{x^2}-4x+8-\frac{16}{x}\)
<=> \(4\ge x^2+\frac{16}{x^2}-4x+\frac{16}{x}\)
<=> \(\left(x-\frac{4}{x}\right)^2-4\left(x-\frac{4}{x}\right)+4\le0\)
<=> \(\left(x-\frac{4}{x}+2\right)^2\le0\) vô nghiệm vì x > 2 => \(x-\frac{4}{x}+2>2\)
Vậy -2 \(\le\) x < 0
\(\Leftrightarrow\left|2x-1\right|\le-1\)
VP >=0 mọi x
VT<0 => vô nghiệm
\(x+2+\left|-2x+1\right|\le x+1\Leftrightarrow\left|2x-1\right|\le-1\)
Vế trái luôn >=0
Vế phải luôn <0
=> bất Phuong trình đã cho vô nghiệm
Bất phương trình \(\Leftrightarrow9.9^{2x-x^2}-34.15^{2x-x^2}+25.25^{2x-x^2}\le0\)
\(\Leftrightarrow9\left(\frac{3}{5}\right)^{2\left(2x-x^2\right)}-34\left(\frac{3}{5}\right)^{2x-x^2}+25\le0\)
Đặt \(t=\left(\frac{3}{5}\right)^{2x-x^2},t>0\)
Ta có bất phương trình :
\(9t^2-34t+25\Leftrightarrow1\le t\le\frac{25}{9}\)
\(\Rightarrow\begin{cases}\left(\frac{3}{5}\right)^{2x-x^2}\ge1\\\left(\frac{3}{5}\right)^{2x-x^2}\le\left(\frac{3}{5}\right)^{-2}\end{cases}\)
\(\Leftrightarrow\begin{cases}2x-x^2\le0\\x^2-2x-2\le0\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) và \(1-\sqrt{3}\le x\le1+\sqrt{3}\)
Vậy tập nghiệm của bất phương trình là :
\(S=\left[1-\sqrt{3};0\right]\cup\left[2;1+\sqrt{3}\right]\)
Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :
Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)
- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)
- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)
\(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm
Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )
Ta thấy rằng nếu x = 1 là nghiệm của bất phương trình :
- Nếu \(x>1\Rightarrow x+2< 2x+1\) thì :
\(2^{x+2}< 2^{2x+1};3^{x+2}< 3^{2x+1}\Rightarrow2^{x+2}+3^{x+2}< 2^{2x+1}+3^{2x+1}\) thỏa mãn đề bài
- Nếu x <1 thì bất đẳng thức ở trên đổi chiều và không thỏa mãn với đề bài
Kết luận bất phương trình đã cho có nghiệm là \(x\ge1\)
\(\left(x^2-2x\right)^2-2\left(x-1\right)^2-1\ge0\)\(\Leftrightarrow\left(x^2-2x\right)^2-2\left(x^2-2x+1\right)-1\ge0\)
Đặt \(t=x^2-2x\), ta được \(t^2-2t-3\ge0\)
Bất phương trình này có nghiệm \(\left[\begin{array}{nghiempt}t\le-1\\t\ge3\end{array}\right.\)
Do đó \(\left(x^2-2x\right)^2-2\left(x-1\right)^2-1\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x^2-2x\le-1\\x^2-2x-3\ge0\end{array}\right.\)
\(\Leftrightarrow x=1\) hoặc \(x\le-1\) hoặc \(x\ge3\)
Vậy bất phương trình đã cho có tập nghiệm là
S =(\(-\infty;-1\)] \(\cup\left\{1\right\}\cup\) [3;\(+\infty\))
Bỏ dấu giá trị tuyệt đối ở vế trái của bất phương trình ta có:
Bất phương trình đã cho tương đương với
(Vô nghiệm)
Vậy bất phương trình đã cho vô nghiệm.