Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -2x > 23 ⇔ x > 23 + 2 ⇔ x > 25.
Vậy nghiệm của bất phương trình là x > 25
Nhận xét: Sai lầm là: khi tìm x phải nhân hai vế với \(-\dfrac{1}{2}\) hoặc chia hai vế cho -2 và đổi chiều bất phương trình
Lời giải đúng: -2x > 23
⇔x < 23 : (-2)
⇔x < -11,5
Vậy nghiệm của bất phương trình: x < -11,5
b) \(-\dfrac{3}{7}x>12\Leftrightarrow\left(-\dfrac{7}{3}\right).\left(-\dfrac{3}{7}\right)>\left(-\dfrac{7}{3}\right).12\Leftrightarrow x>-28\)
Vậy nghiệm của bất phương trình là x > -28.
Nhận xét: Sai làm là nhân hai vế của bất phương trình cho mà không đổi chiều bất phương trình.
Lời giải đúng:
\(-\dfrac{3}{7}x>12\Leftrightarrow\left(-\dfrac{7}{3}\right).\left(-\dfrac{3}{7}x\right)< \left(-\dfrac{7}{3}\right).12\)
⇔ x < -28
Vậy nghiệm của bất phương trình là x < -28.
Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa
V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho
\(3x-3=|2x+1|\)
Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)
Vậy S={3}
Cài đề câu b ,bn xem lại nhé!
\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)
\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)
\(\Leftrightarrow6x-24>0\)
\(\Leftrightarrow x>4\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ : S = { \(x\text{\x}>4\)}
\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)
\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)
\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)
\(\Leftrightarrow15x-165\le0\)
\(\Leftrightarrow x\le11\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........
tk mk nka !!! chúc bạn học tốt !!!
Vì x2 + 12 > 0 với mọi x
=> (4x-1)(x2+12)(-x+4) > 0
Khi ( (4x-1)(-x+4) > 0
TH1 : \(\hept{\begin{cases}4x-1>0\\-x+4>0\end{cases}}\)
<=> \(\hept{\begin{cases}x>\frac{1}{4}\\x< 4\end{cases}}\)
=> 1/4 < x < 4
TH2 \(\hept{\begin{cases}4x-1< 0\\-x+4< 0\end{cases}}\)
<=> \(\hept{\begin{cases}x< \frac{1}{4}\\x>4\end{cases}}\)
Vì không tồn tai x lớn hơn 4 và nhỏ hơn 1/4
=> TH2 không tồn tại x
=> (4x-1)(x2+12)(-x+4) > 0
khi 1/4 < x < 4
Vì x^2 + 12 > 0 với mọi x
Ta có bất phương trình tương đương: (4x-1)(-x+4) > 0
=> 4x-1 và -x+4 phải cùng dấu.
Trường hợp 1: 4x-1 > 0 và -x + 4 > 0 <=> x>1/4 và x<4 <=> 1/4 < x < 4.
Trường hợp 2: 4x-1 < 0 và -x + 4 < 0 <=> x<1/4 và x>4 (vô lý)
Vậy S={x | 1/4 < x < 4}
\(a,4x-6< 7x-12\)
\(\Leftrightarrow6< 3x\Leftrightarrow x>2\)
\(b,\frac{3x-7}{4}\ge2-\frac{x+5}{3}\)
\(\Leftrightarrow3\left(3x-7\right)\ge24-4\left(x+5\right)\)
\(\Leftrightarrow13x\ge25\Leftrightarrow x\ge\frac{25}{13}\)
\(c,\frac{3x-8}{-7}\ge1-\frac{x+2}{-3}\)
\(\Leftrightarrow-3\left(3x-8\right)\ge21+7\left(x+2\right)\)
\(\Leftrightarrow-16x\ge11\)
\(\Leftrightarrow x\le-\frac{11}{16}\)
\(d,-12-8x>3+2x-\left(5-7x\right)\)
\(\Leftrightarrow14>17x\Leftrightarrow x< \frac{14}{17}\)
\(e,-1+\frac{x-1}{-3}\le\frac{x+2}{-9}\)
\(\Leftrightarrow-9-3\left(x-1\right)\le-\left(x+2\right)\)
\(\Leftrightarrow-2x\le4\Leftrightarrow x\ge-2\)
Để \(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\Leftrightarrow\hept{\begin{cases}4x-1>0\\-x+4>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4x>1\\-x>-4\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< 4\end{cases}\Rightarrow}\frac{1}{4}< x< 4}\)
Vậy \(\frac{1}{4}< x< 4\)
\(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}4x-1>0\Leftrightarrow4x>1\Leftrightarrow x>\frac{1}{4}\\x^2+12>0\Leftrightarrow x^2>-12\Leftrightarrow x>12\\-x+4>0\Leftrightarrow-x>-4\Leftrightarrow x< 4\end{cases}}\)
a, pt <=> x^2-x+5/x^2+x+3 - 1 < 0
<=> x^2-x+5-x^2-x-3/x^2+x+3 > 0
<=> 2-2x/x^2+x+3 > 0
<=> 2-2x > 0 ( vì x^2+x+3 > 0 )
<=> 2 > 2x
<=> x < 1
Vậy x < 1
Tk mk nha
B, =2x2-2x-14\(\le\)x2+1
=(2x2-x2)-2x-15\(\le\)0
=x2-2x-15\(\le\)0
=x2+3x-5x-15\(\le\)0
=x(x+3)-5(x+3)<=0
=(x+3)(x-5)<=0
Bạn giải ra ta được x=-3
x=5
Đáp số: x > 13.