Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: \(x\geq 3\) hoặc \(x\leq -5\)
Nhân cả 2 vế với $\sqrt{2}$ ta có:
\(\sqrt{2x^2+6x+4}+\sqrt{2x^2+4x-30}=2\sqrt{2x^2-9x+9}\)
\(\Rightarrow (\sqrt{2x^2+6x+4}-\sqrt{2x^2-9x+9})+(\sqrt{2x^2+4x-30}-\sqrt{2x^2-9x+9})=0\)
\(\Leftrightarrow \frac{(2x^2+6x+2)-(2x^2-9x+9)}{\sqrt{2x^2+6x+4}+\sqrt{2x^2-9x+9}}+\frac{(2x^2+4x-30)-(2x^2-9x+9)}{\sqrt{2x^2+4x-30}+\sqrt{2x^2-9x+9}}=0\)
\(\Leftrightarrow \frac{15x-5}{\sqrt{2x^2+6x+4}+\sqrt{2x^2-9x+9}}+\frac{13x-39}{\sqrt{2x^2+4x-30}+\sqrt{2x^2-9x+9}}=0(*)\)
Nếu \(x\geq 3\): Thấy rằng phân thức thứ nhất lớn hơn $0$ do \(x\geq 3\), phân thức thứ 2 lớn hơn hoặc bằng $0$ do \(x\geq 0\), do đó tổng của chúng phải lớn hơn $0$
Nếu \(x\leq -5\): Ta thấy cả 2 phân thức đều âm nên tổng của chúng phải nhỏ hơn $0$
Tức là $(*)$ vô nghiệm
Vậy pt vô nghiệm.
Bác Akai Haruma làm sai rồi. Làm lại đi bác. Nó sai từ điều kiện xác định dẫn đến sai bài toán. Chia thêm trường hợp nữa mới đủ. Thiếu mất trường hợp rồi.
a) \(\sqrt{5x}=\sqrt{35}\)
ĐK : x ≥ 0
Bình phương hai vế
pt ⇔ 5x = 35 ⇔ x = 7 ( tm )
b) \(\sqrt{36\left(x-5\right)}=18\)
ĐK : x ≥ 5
Bình phương hai vế
pt ⇔ 36( x - 5 ) = 324
⇔ x - 5 = 9
⇔ x = 14 ( tm )
c) \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)
⇔ \(\sqrt{4^2\left(1-2x\right)^2}=20\)
⇔ \(\sqrt{\left(4-8x\right)^2}=20\)
⇔ \(\left|4-8x\right|=20\)
⇔ \(\orbr{\begin{cases}4-8x=20\\4-8x=-20\end{cases}}\)
⇔ \(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
d) \(\sqrt{3-2x}\le\sqrt{5}\)
ĐK : x ≤ 3/2
Bình phương hai vế
bpt ⇔ 3 - 2x ≤ 5
⇔ -2x ≤ 2
⇔ x ≥ -1
Kết hợp với ĐK => Nghiệm của bpt là -1 ≤ x ≤ 3/2
\(a,\sqrt{5x}=\sqrt{35}\left(x\ge0\right)\)
\(\Leftrightarrow5x=35\)
\(\Leftrightarrow x=7\left(tm\right)\)
vậy...
b, \(\sqrt{36\left(x-5\right)}=18\left(x\ge5\right)\)
\(\Leftrightarrow6\sqrt{x-5}=18\)
\(\Leftrightarrow\sqrt{x-5}=3\)
\(\Leftrightarrow x-5=9\)
\(\Leftrightarrow x=14\left(tm\right)\)
vậy...
c, \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)
\(\Leftrightarrow4\sqrt{\left(1-2x\right)^2}=20\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)
\(\Leftrightarrow\left|1-2x\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
vậy....
\(d,\sqrt{3-2x}< 5\left(x< 1.5\right)\)
\(\Leftrightarrow3-2x< 25\)
\(\Leftrightarrow-2x< 22\)
\(\Leftrightarrow x>-11\)
\(\Rightarrow-11< x< 1.5\)
vạy.
Lời giải:
a) ĐK: \(x>0; x\neq 25; x\neq 36\)
PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)
\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)
\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)
Vậy.......
b)
ĐK: \(x\geq \frac{-1}{2}\)
PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)
\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)
c)
ĐK: \(x\geq 2\)
PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)
\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)
\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)
a, tìm trong nâng cao phát triển tập 2
b,
ta thấy VT là 1 tam thức bậc 2 nên ta đặt \(\sqrt{\frac{x+3}{2}}=ay+b\)
<=>x+3=2a2y2+4aby+2b2
<=>ax+3a=2a3y2+4a2by+2ab2
<=>ax+3a-2ab2=2a3y2+4a2by
\(\Leftrightarrow\hept{\begin{cases}2x^2+4x=ay+b\\2a^3y^2+4a^2by=ax+3a-2ab^2\end{cases}}\)
đưa hệ này về hệ đối xứng thì ta có:\(\hept{\begin{cases}a^3=1\\a^2b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)
\(\Rightarrow\sqrt{2x-1}=y+1\)
sau đó đưa về hệ đối xứng là được
Trên tia đối tia CB lấy F sao cho AM = 2CF
\(\Delta DCF\approx\Delta DAM\left(c-g-c\right)\)
\(\Rightarrow DM=2DF\) và \(\widehat{ADM}=\widehat{CDF}\) nên \(\widehat{MDF}=90^0\) hay \(\Rightarrow\widehat{EDF}+\widehat{MDE}=90^0\) (1)
Lại có \(\widehat{DEC}+\widehat{EDC}=90^0\) \(\Rightarrow\widehat{DEC}+\widehat{MDE}=90^0\) (2)
(1), (2) => \(\widehat{EDF}=\widehat{DEC}\) nên DF = EF
Lại có \(DM=2DF=2EF=2CF+2EC=AM+2EC\)
Done!
a, \(\sqrt{4x^2+20x+25}\) + \(\sqrt{x^2-8x+16}\) = \(\sqrt{x^2+18x+81}\)
⇔ 4x2 + 20x + 25 + \(2\sqrt{\left(4x^2+20x+25\right)\left(x^2-8x+16\right)}\) = x2 + 18x + 81
⇔ 4x2 + 20x + 25 - x2 - 18x - 81 + \(2\sqrt{\left(2x+5\right)^2.\left(x-4\right)^2}\) = 0
⇔ 3x2 + 2x - 56 + 2.(2x + 5) . (x - 4) = 0
⇔ 3x2 + 2x - 56 + (4x + 10) . (x - 4) = 0
⇔ 3x2 + 2x - 56 + 4x2 - 16x + 10x - 40 = 0
⇔ 7x2 - 4x - 96 = 0
x1 = 4 ( nhận )
x2 = \(\frac{-24}{7}\) ( nhận )
Vậy: S = {4; \(\frac{-24}{7}\)}
đáp án là bằng nhau
ĐK\(\hept{\begin{cases}x^2-8x+5\ge0\\x^2+2x-15\ge0\\4x^2-18x+18\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\orbr{\begin{cases}x\ge5\\x\le3\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le-5\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le\frac{3}{2}\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\le-5\\x\ge5\end{cases}hoặc}~x=3\)