Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(x = 2\) vào phương trình \(\sqrt { - 2{x^2} - 2x + 11} = \sqrt { - {x^2} + 3} \) ta thấy không thỏa mãn vì dưới dấu căn là \( - 1\) không thỏa mãn
Vậy \(x = 2\) không là nghiệm của phương trình do đó lời giải như trên là sai.
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
\(ĐKXĐ:x\ge-\dfrac{3}{2}\)
Bất phương trình tương đương :
\(2x+3+x+2+2\sqrt{\left(2x+3\right)\left(x+2\right)}\le1\)
\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+2\right)}\le-3x-4\)
\(\Leftrightarrow4.\left(2x+3\right)\left(x+2\right)\le\left(-3x-4\right)^2\)
\(\Leftrightarrow4.\left(2x^2+7x+6\right)\le9x^2+16+24x\)
\(\Leftrightarrow x^2-4x-8\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2+2\sqrt{3}\\x\le2-2\sqrt{3}\end{matrix}\right.\). Kết hợp với ĐKXĐ ....
P/s : E không chắc lắm .....
a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)
TH1 : \(x\le-3\) ( LĐ )
TH2 : \(x\ge0\)
BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)
\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
Vậy \(S=R/\left(-3;0\right)\)
a.
\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1\le x\le3\)
b.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)
a) Bình phương hai vế của phương trình\(\sqrt {{x^2} - 3x + 2} = \sqrt { - {x^2} - 2x + 2} \)ta được:
\({x^2} - 3x + 2 = - {x^2} - 2x + 2\)(1)
Giải phương trình trên ta có:
\((1) \Leftrightarrow 2{x^2} - x = 0\)
\( \Leftrightarrow x(2x - 1) = 0\)
\( \Leftrightarrow x = 0\) hoặc \(x = \frac{1}{2}\)
b) Thử lại ta có:
Với x=0, thay vào phương trình đã cho ta được: \(\sqrt {{0^2} - 3.0 + 2} = \sqrt { - {0^2} - 2.0 + 2} \Leftrightarrow \sqrt 2 = \sqrt 2 \) (luôn đúng)
Với \(x = \frac{1}{2}\), thay vào phương trình đã cho ta được:
\(\sqrt {{{\left( {\frac{1}{2}} \right)}^2} - 3.\frac{1}{2} + 2} = \sqrt { - {{\left( {\frac{1}{2}} \right)}^2} - 2.\frac{1}{2} + 2} \Leftrightarrow \sqrt {\frac{3}{4}} = \sqrt {\frac{3}{4}} \) (luôn đúng)
Vậy các giá trị x tìm được ở câu a thỏa mãn phương trình đã cho.
ĐKXĐ: \(-\dfrac{3}{2}\le x\le4\)
BPT tương đương:
\(6+2\sqrt{\left(x+2\right)\left(4-x\right)}>2x+3\)
\(\Leftrightarrow2\sqrt{-x^2+2x+8}>2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{3}{2}\\\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\4\left(-x^2+2x+8\right)>4x^2-12x+9\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{3}{2}\\\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\8x^2-20x-23< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-\dfrac{3}{2}\le x< \dfrac{5+\sqrt{71}}{4}\)