\(\frac{x+1}{2953}+\frac{x+953}{2001}+\frac{x+2950}{4}>-3\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

\(\frac{x+1}{2953}+\frac{x+953}{2001}+\frac{x+2950}{4}>-3\)

\(\Leftrightarrow\frac{x+1}{2953}+\frac{x+953}{2001}+\frac{x+2950}{4}+3>0\)

\(\Leftrightarrow\frac{x+1}{2953}+1+\frac{x+953}{2001}+1+\frac{x+2950}{4}+1>0\)

\(\Leftrightarrow\frac{x+1+2953}{2953}+\frac{x+953+2001}{2001}+\frac{x+2950+4}{4}>0\)

\(\Leftrightarrow\frac{x+2954}{2953}+\frac{x+2954}{2001}+\frac{x+2954}{4}>0\)

\(\Leftrightarrow\left(x+2954\right)\left(\frac{1}{2953}+\frac{1}{2001}+\frac{1}{4}\right)>0\)

Vì \(\frac{1}{2953}+\frac{1}{2001}+\frac{1}{4}>0\)

Nên \(x+2954>0\)

\(\Leftrightarrow x>-2954\)

Vậy .........

2 tháng 12 2017

ĐK : \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)

Đặt \(\sqrt{\frac{x+1}{x}}=t>0\)

\(bpt\Leftrightarrow\frac{1}{t^2}-2t>3\Leftrightarrow2t^3+3t^2-1< 0\Leftrightarrow\left(2t-1\right)\left(t+1\right)^2< 0\Leftrightarrow2t-1< 0\)(do \(\left(t+1\right)^2>0\))

       \(\Leftrightarrow t< \frac{1}{2}hay\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Rightarrow\frac{x+1}{x}< \frac{1}{4}\)

Với x >0, ta có: \(\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow4\left(x+1\right)< 1\Leftrightarrow x< -\frac{3}{4}\left(trái.với.gt:x>0\right)\)

Với x<-1 ta có: \(\frac{x+1}{x}< \frac{1}{4}\Rightarrow4\left(x+1\right)>x\Rightarrow x>-\frac{3}{4}\Rightarrow-\frac{3}{4}< x< -1\)

Vậy nghiệm của hệ phương trình là: \(-\frac{3}{4}< x< -1\)

27 tháng 6 2016

cho tam giác abc vuông tại a và đường cao ah =12cm, ch = 5cm. tính sin b sin c

ai giải giúp mình bài toán này với mk đang cần rất gấp

16 tháng 10 2015

Vậy S={x|1/3<x bé hơn hoặc =3}

27 tháng 6 2016

Theo đề bài ta có: \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}-\frac{x-4}{5}-\frac{x-5}{6}>0\)

=> \(\frac{x-1}{2}+1+\frac{x-2}{3}+1+\frac{x-3}{4}+1-\left(\frac{x-4}{5}+1\right)-\left(\frac{x-5}{6}+1\right)>1\)

<=> \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}>1\)

<=>\(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)>1\)

<=> \(\left(x+1\right)\cdot\frac{43}{60}>1\)

<=>\(x+1>\frac{60}{43}\)

<=> x>\(\frac{17}{43}\)

Vậy x>17/43

8 tháng 7 2018

\(x-\frac{2x+1}{2}-\frac{x+2}{3}>11\)

\(\Leftrightarrow\frac{6x}{6}-\frac{3.\left(2x+1\right)}{6}-\frac{2.\left(x+2\right)}{6}>11\)

\(\Leftrightarrow\frac{6x-6x-3-2x-4}{6}>11\)

\(\Leftrightarrow\frac{-2x-7}{6}>11\)

\(\Leftrightarrow-2x-7>66\)

\(\Leftrightarrow-2x>73\)

\(\Leftrightarrow x< \frac{-73}{2}\)

17 tháng 10 2015

\(ĐKXĐ:x\le3\)

\(\Leftrightarrow\frac{5x+2\sqrt{3-x}-x}{4}>\frac{6-4+3\sqrt{3-x}}{6}\Leftrightarrow\frac{6x+3\sqrt{3-x}}{6}-\frac{2+3\sqrt{3-x}}{6}>0\Leftrightarrow3x-1>0\Leftrightarrow x>\frac{1}{3}\)

Vậy \(\frac{1}{3}