Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải bất phương trình: \(\left|x^2-\sqrt{x-3}\right|< \left|x^2-2\right|+\left|2-\sqrt{x-3}\right|\)
Lời giải:ĐK: $x>3$
Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$
Do đó:
$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$
Dấu "=" xảy ra khi:
$(x^2-2)(2-\sqrt{x-3})\geq 0$
$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)
$\Leftrightarrow x< 7$
Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là
$[7;+\infty)\cup (-\infty;3]$
Lời giải:ĐK: $x>3$
Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$
Do đó:
$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$
Dấu "=" xảy ra khi:
$(x^2-2)(2-\sqrt{x-3})\geq 0$
$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)
$\Leftrightarrow x< 7$
Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là
$[7;+\infty)\cup (-\infty;3]$
ĐKXĐ: \(x\ge1\).
Phương trình đã cho tương đương:
\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)
\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)
\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).
Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).
Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).
Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).
Vậy...
Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!
\(\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=1\Rightarrow\left(4+\sqrt{15}\right)^x\left(4-\sqrt{15}\right)^x=1\)
Đặt \(t=\left(4+\sqrt{15}\right)^x,t>0\Rightarrow\left(4-\sqrt{15}\right)^x=\frac{1}{t}\)
Bất phương trình đã cho trở thành :
\(t+\frac{1}{t}>8\Rightarrow t^2-8t+1>0\Leftrightarrow\left[\begin{array}{nghiempt}t>4+\sqrt{15}\\t< 4-\sqrt{15}\end{array}\right.\)
* \(t>4+\sqrt{15}\Rightarrow\left(4+\sqrt{15}\right)^x>4+\sqrt{15}\Rightarrow x>1\)
* \(t< 4-\sqrt{15}\Rightarrow\left(4+\sqrt{15}\right)^x< 4-\sqrt{15}\Rightarrow\left(4+\sqrt{15}\right)^x< \left(4+\sqrt{15}\right)^{-1}\Rightarrow x< -1\)
Vậy tập nghiệm của bất phương trình là \(S=\left(-\infty;-1\right)\cup\left(1;+\infty\right)\)
ĐKXĐ: \(0\le x\le5\).
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\).
PT đã cho tương đương với: \(\left(8-ab\right)\left(a-b\right)=2\left(a-b\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\ab=6\end{matrix}\right.\).
+) \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=2,5\left(TMĐK\right)\).
+) \(ab=6\Leftrightarrow\sqrt{x\left(5-x\right)}=6\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TMĐK\right)\\x=3\left(TMĐK\right)\end{matrix}\right.\).
Vậy...
ĐK: \(0\le x\le5\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(pt\Leftrightarrow\left(8-ab\right)\left(a-b\right)=2\left(a^2-b^2\right)\)
\(\Leftrightarrow\left(a-b\right)\left(8-ab-2a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\ab+2a+2b=8\end{matrix}\right.\)
TH1: \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)
TH2: \(ab+2a+2b=8\)
\(\Leftrightarrow\sqrt{5x-x^2}+2\sqrt{5-x}+2\sqrt{x}=8\)
\(\Leftrightarrow\left(\sqrt{5-x}+\sqrt{x}-3\right)\left(\sqrt{5-x}+\sqrt{x}+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5-x}+\sqrt{x}=-7\left(l\right)\\\sqrt{5-x}+\sqrt{x}=3\end{matrix}\right.\)
\(\sqrt{5-x}+\sqrt{x}=3\)
\(\Leftrightarrow5+2\sqrt{5x-x^2}=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
Vậy ...
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=a\) (1)
Điều kiện :
\(\begin{cases}1+x\ge0\\8-x\ge0\\\left(1+x\right)\left(8-x\right)\ge0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x\ge-1\\x\le8\\-1\le x\le8\end{cases}\) \(\Leftrightarrow\) \(x\in\left[-1;8\right]\) : = (*)
Đặt \(t=\sqrt{1+x}+\sqrt{8-x}\) với điều kiện \(x\in\) (*) ta có
\(\begin{cases}t\ge0\\t^2=1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}\end{cases}\)
\(\Rightarrow\) \(\begin{cases}t\ge0\\9\le t^2\le9+\left(1+x+8-x\right)=18\end{cases}\)
\(\Rightarrow\) \(t\in\left[3;3\sqrt{2}\right]\) : = (*1)
Ngoài ra, từ đó còn có \(\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{t^2-9}{2}\)
Phương trình (1) trở thành
\(f\left(t\right)=\frac{1}{2}\left(t^2+2t-9\right)=a\) (2)
1) Với a=3 ta có :
(2) \(\Leftrightarrow\) \(t^2+2t-15=0\) \(\Leftrightarrow\) \(\begin{cases}t=3\\t=-5\end{cases}\)
Trong 2 nghiệm trên, chỉ có t =3 thuộc (*1) nên với a=3 ta có
(1) \(\Leftrightarrow\) \(\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{3^2-9}{2}=0\) \(\Leftrightarrow\) \(\begin{cases}x=-1\\x=8\end{cases}\)
Hai nghiệm này cùng thuộc (*) như vậy khi a=3, phương trình đã cho có 2 nghiệm x=-1 và x=8
2)Nhận thấy phương trình (1) có nghiệm \(x\in\) (*) khi và chỉ khi phương trình (2)
có nghiệm t\(\in\) (*1) hay là khi và chỉ khi đường thẳng y=a (vuông góc với y'Oy) có điểm ching với phần đồ thị hàm số y=f(t) vẽ trên ( *1).
Lập bảng biến thiên của hàm số y = f(t) trên (*1) với nhận xét rằng f'(t) = t+1>0, mọi t \(x\in\) (*)
t | \(-\infty\) 3 \(3\sqrt{2}\) \(+\infty\) |
f'(t) | + |
f (t) | \(\frac{9+6\sqrt{2}}{2}\) 3 |
Từ nhận xét trên và từ bảng biến thiên, ta được \(3\le a\le\frac{9+6\sqrt{2}}{2}\) là giá trị cần tìm
Vì \(\left(\sqrt{3+\sqrt{8}}\right)^x.\left(\sqrt{3-\sqrt{8}}\right)^x=1\)
nên đặt \(t=\left(\sqrt{3+\sqrt{8}}\right)^x>0\)
\(\Rightarrow\left(\sqrt{3-\sqrt{8}}\right)^x=\frac{1}{t}\)
Bất phương trình trở thành : \(t+\frac{1}{t}\le34\Leftrightarrow t^2-34t+1\le0\)
\(\Leftrightarrow17-6\sqrt{8}\le t\le17+6\sqrt{8}\)
\(\Leftrightarrow\left(\sqrt{3+\sqrt{8}}\right)^{-4}\le\left(\sqrt{3+\sqrt{8}}\right)^x\le\left(\sqrt{3+\sqrt{8}}\right)^4\)
Vậy tập nghiệm của bất phương trình là \(S=\left[-4;4\right]\)