Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ : \(D=R\)
BPT \(\Leftrightarrow x^2+5x+4< 5\sqrt{x^2+5x+4+24}\)
Đặt \(x^2+5x+4=a\left(a\ge-\dfrac{9}{4}\right)\)
BPTTT : \(5\sqrt{a+24}>a\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+24\ge0\\a< 0\end{matrix}\right.\\\left\{{}\begin{matrix}a\ge0\\25\left(a+24\right)>a^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\\left\{{}\begin{matrix}a^2-25a-600< 0\\a\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\0\le a< 40\end{matrix}\right.\)
\(\Leftrightarrow-24\le a< 40\)
- Thay lại a vào ta được : \(\left\{{}\begin{matrix}x^2+5x-36< 0\\x^2+5x+28\ge0\end{matrix}\right.\)
\(\Leftrightarrow-9< x< 4\)
Vậy ....
b, ĐKXĐ : \(x>0\)
BĐT \(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< x+\dfrac{1}{4x}+1\)
- Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)
\(\Leftrightarrow a^2=x+\dfrac{1}{4x}+1\)
BPTTT : \(2a\le a^2\)
\(\Leftrightarrow\left[{}\begin{matrix}a\le0\\a\ge2\end{matrix}\right.\)
\(\Leftrightarrow a\ge2\)
\(\Leftrightarrow a^2\ge4\)
- Thay a vào lại BPT ta được : \(x+\dfrac{1}{4x}-3\ge0\)
\(\Leftrightarrow4x^2-12x+1\ge0\)
\(\Leftrightarrow x=(0;\dfrac{3-2\sqrt{2}}{2}]\cup[\dfrac{3+2\sqrt{2}}{2};+\infty)\)
Vậy ...
a) \(\left(x+1\right)\left(x-1\right)\left(3x-6\right)>0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow\left[{}\begin{matrix}-1< x< 1\\x>2\end{matrix}\right.\)
b) \(\dfrac{x+3}{x-2}\le0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow-3\le x< 2\)
d) \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)
\(\Leftrightarrow\dfrac{2x-5}{3x+2}-\dfrac{3x+2}{2x-5}< 0\)
\(\Leftrightarrow\dfrac{\left(2x-5\right)^2-\left(3x+2\right)^2}{\left(3x+2\right)\left(2x-5\right)}< 0\)
\(\Leftrightarrow\dfrac{\left(2x-5+3x+2\right)\left(2x-5-3x-2\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)
\(\Leftrightarrow\dfrac{-\left(5x-3\right)\left(x+7\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow\left[{}\begin{matrix}-7< x< -\dfrac{2}{3}\\\dfrac{5}{3}< x< \dfrac{5}{2}\end{matrix}\right.\)
4.
ĐK: \(x\ge0\)
Ta có \(1-\sqrt{2\left(x^2-x+1\right)}\le1-\sqrt{2}< 0\), khi đó:
\(\dfrac{x-\sqrt{x}}{1-\sqrt{2\left(x^2-x+1\right)}}\ge1\)
\(\Leftrightarrow x-\sqrt{x}\le1-\sqrt{2\left(x^2-x+1\right)}\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(x+\dfrac{1}{x}-1\right)}\le0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2}\le0\)
\(\Leftrightarrow t-1+\sqrt{2t^2+2}\le0\left(t=\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
\(\Leftrightarrow\sqrt{2t^2+2}\le1-t\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-t>0\\2t^2+2\le t^2-2t+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t< 1\\\left(t+1\right)^2\le0\end{matrix}\right.\)
\(\Leftrightarrow t=-1\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}+1=0\)
\(\Leftrightarrow x+\sqrt{x}-1=0\)
\(\Leftrightarrow x=\dfrac{3-\sqrt{5}}{2}\)
\(\dfrac{x-\sqrt{x}}{1-\sqrt{2\cdot\left(x^2-x+1\right)}}\ge1\) ( x \(\ge0\))
\(\Rightarrow x-\sqrt{x}\ge1-\sqrt{2\left(x^2+x+1\right)}\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)\ge\sqrt{2\left(x^2+x+1\right)}\)
\(\Rightarrow x\left(x-2\sqrt{x}+1\right)\ge2\left(x^2+x+1\right)\)
\(\Rightarrow x^2-2x\sqrt{x}+x-2x^2-2x-2\ge0\)
\(\Rightarrow-x^2-2x\sqrt{x}-x\ge0\)
\(\Rightarrow-\left(x^2-2x\sqrt{x}+x\right)\le0\)
\(\Rightarrow-\left(x-\sqrt{x}\right)^2\le0\)
Vì \(\left(x-\sqrt{x}\right)^2\ge0\)
\(\Rightarrow-\left(x-\sqrt{x}\right)^2\le0\)
Bất đẳng thức này đúng, mà các bất đẳng thức trên là tương đương
=> Với mọi \(x\ge0\), ta được \(\dfrac{x-\sqrt{x}}{1-\sqrt{2\left(x^2-x+1\right)}}\ge1\)