\(\dfrac{x-2}{1-x}\)>0

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

a) ( x - 2)( 6 - 2x ) > 0

Lập bảng xét dấu , ta có :

x x-2 6-2x Tích số 2 3 0 0 0 0 - + + + + - - + -
Vậy , nghiệm của BPT : 2 < x < 3

b) \(\dfrac{x-2}{1-x}>0\)

Lập bảng xét dấu , ta có :

x x-2 1-x Thương 1 2 0 0 0 - - + + - - - + - Vậy , ngiệm của BPT là : 1 < x < 2\

26 tháng 4 2018

c) \(\dfrac{x-1}{x-3}\) > 0

Lập bảng xét dấu , ta có :

x x-1 x-3 Thương 1 3 0 0 0 - + + - - + + - + Vậy , nghiệm của BPT là : x < 1 hoặc : x > 3

3 tháng 5 2018

Giải các bất phương trình sau :

a) \(\left(x-1\right)\left(x+3\right)< 0\)

Lập bảng xét dấu :

x x-1 x+3 (x-1)(x+3) -3 1 - 0 + - 0 - + + + - +

Nghiệm của bất phương trình là : \(-3< x< 1\)

b) \(\left(2x-1\right)\left(x+2\right)>0\)

Lập bảng xét dấu :

x 2x-1 x+2 (2x-1)(x+2) -2 1 2 0 0 - - + - + + - + +

Nghiệm của bất phương trình là : \(x< -2;x>\dfrac{1}{2}\)

c) \(\dfrac{3x-2}{2x-1}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-2\ge0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-2\le0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x< \dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{2}{3}\\x< \dfrac{1}{2}\end{matrix}\right.\)

d) \(\dfrac{3x+2}{x+1}>2\)

\(\Leftrightarrow\dfrac{3x+2}{x+1}-\dfrac{2\left(x+1\right)}{x+1}>0\)

\(\Leftrightarrow\dfrac{3x+2-2x-2}{x+1}>0\)

\(\Leftrightarrow\dfrac{x}{x+1}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x+1< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x< -1\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}x\ge0\\x< -1\end{matrix}\right.\)

3 tháng 5 2018

a, (x-1)(x+3) <0

TH1: x-1<0<=>x<1

x+3>0<=>x>-3

=>-3<x<1

TH2: x-1>0<=>x>1

x+3<0<=>x<-3

=>Vô lý

Vậy S={x|-3<x<1}

b,(2x-1)(x+2)>0

TH1: 2x-1\(\ge\)0<=>2x\(\ge\)1<=>x\(\ge\)\(\dfrac{1}{2}\)

x+2\(\ge\)0<=>x\(\ge\)-2

=>x\(\ge\)\(\dfrac{1}{2}\)

TH2: 2x-1<0<=>2x<1<=>x<\(\dfrac{1}{2}\)

x+2<0<=>x<-2

=>x<-2

Vậy S={x|x<-2 hoặc x\(\ge\)\(\dfrac{1}{2}\)}

c, \(\dfrac{3x-2}{2x-1}\)>0 (Tử và mẫu cùng dấu)

TH1 3x-2\(\ge\)0<=>3x\(\ge\)2<=>x\(\ge\)2

2x-1>0<=>2x>1<=>x>\(\dfrac{1}{2}\)

=>x\(\ge\)2

TH2: 3x-2<0<=>3x<2<=>x<\(\dfrac{2}{3}\)

2x-1<0<=>2x<1<=>x<\(\dfrac{1}{2}\)

=>x<\(\dfrac{1}{2}\)

Vậy S={x|x\(\ge\)2 hoặc x<\(\dfrac{1}{2}\)}

d,\(\dfrac{3x+2}{x+1}>2\)

<=>\(\dfrac{3x+2}{x+1}-2\)>0

<=>\(\dfrac{3x-2-2x-2}{x+1}\)>0

<=>\(\dfrac{x-4}{x+1}\)>0 (Tử và mẫu cùng dấu)

TH1: x-4\(\ge\)0<=>x\(\ge\)4

x+1>0<=>x>-1

=>x\(\ge\)-4

TH2: x-4<0<=>x<4

x+1<0<=>x<-1

=>x<-1

Vậy S={x|x\(\ge\)-4 hoặc x<-1}

4 tháng 4 2018

a.Ta có : \(\dfrac{x^2-4x+4}{x^3-2x^2-4x+8}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\)

Để \(\dfrac{1}{x+2}>0\) thì 1 và x+2 cùng dấu

mà 1>0

=>x + 2 > 0 <=> x > 2

\(\Rightarrow S=\left\{x|x>2\right\}\)

b, Ta có : \(x^2\ge0\Rightarrow x^2+1>0\)

Để \(\dfrac{7-8x}{x^2+1}>0\) thì 7 - 8x và \(x^2+1\) cùng dấu

\(x^2+1>0\Rightarrow7-8x>0\Leftrightarrow x< \dfrac{7}{8}\)

\(\Rightarrow S=\left\{x|x< \dfrac{7}{8}\right\}\)

c. Ta có bảng xét dấu:

x -\(\infty\) -1 -\(\dfrac{1}{2}\) +\(\infty\)
x+1 - 0 + +
2x+1 - - 0 +
\(\dfrac{2x+1}{x+1}\) + \(//\) - 0 +

4 tháng 4 2018

Bổ xung câu c:

Vậy : \(-1< x\le\dfrac{-1}{2}\)

22 tháng 4 2017

Giải bài 25 trang 47 SGK Toán 8 Tập 2 | Giải toán lớp 8

a: \(x>3:\dfrac{1}{2}=6\)

b: \(x>-2:\left(-\dfrac{1}{3}\right)=6\)

c: \(x>-4:\dfrac{2}{3}=-6\)

d: \(x< -6:\dfrac{3}{5}=-10\)

25 tháng 4 2017

cần giúp ko

25 tháng 4 2017

8 tháng 4 2018

a) \(3\left(4x-1\right)-2x\left(5x+2\right)>8x-2\)

\(\Leftrightarrow12x-3-10x^2-4x>8x-2\)

\(\Leftrightarrow-10x^2>5\)

\(\Leftrightarrow x^2< \dfrac{-1}{2}\)(vô lí)

Vậy bất phương trình đã cho vô nghiệm.

8 tháng 4 2018

h)

\(\dfrac{x+5}{x+7}-1>0\)

\(\Leftrightarrow\dfrac{x+5}{x+7}-\dfrac{x+7}{x+7}>0\)

\(\Leftrightarrow\dfrac{x+5-x-7}{x+7}>0\)

\(\Leftrightarrow\dfrac{-2}{x+7}>0\)

\(\Leftrightarrow x+7< 0\)

\(\Leftrightarrow x< -7\)

g)

\(\dfrac{4-x}{3x+5}\ge0\)

* TH1:

\(4-x\ge0\)\(3x+5>0\)

\(\Leftrightarrow x\le4\)\(x>\dfrac{-5}{3}\)

* TH2:

\(4-x\le0\)\(3x+5< 0\)

\(\Leftrightarrow x\ge4\)\(x< \dfrac{-5}{3}\) ( loại)

Vậy: \(-\dfrac{5}{3}< x\le4\)

a: \(x< -9:\dfrac{3}{2}=-9\cdot\dfrac{2}{3}=-6\)

b: 2/3x>-2

hay x>-2:2/3=-3

c: \(2x>\dfrac{9}{5}-\dfrac{4}{5}=1\)

hay x>1/2

d: \(\Leftrightarrow x\cdot\dfrac{3}{5}>6-4=2\)

hay x>2:3/5=2x5/3=10/3

15 tháng 4 2018

a) \(\left(2x+1\right)^2-\left(x+2\right)^2>0\)

\(\Leftrightarrow\left(2x+1-x-2\right)\left(2x+1+x+2\right)>0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\3x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\3x+3< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là x > 1 hoặc x < -1

b) Sửa lại rồi làm câu b nèk\(\dfrac{5x-3x}{5}+\dfrac{3x+1}{4}>\dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)

\(\Leftrightarrow4\left(5x-3x\right)+5\left(3x+1\right)>10\left(x+2x\right)-30\)\(\Leftrightarrow20x-12x+15x+5>10x+20x-30\)\(\Leftrightarrow20x-12x+15x-10x-20x>-30-5\)\(\Leftrightarrow-7x>-35\)

\(\Leftrightarrow x< 5\)

c) \(\dfrac{-1}{2x+3}< 0\)

dễ nhé mình học bài hóa mai kt 15 phút nên ko có time để giúp