Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne7\end{matrix}\right.\)
\(\dfrac{2\left(x-4\right)}{\left(x-1\right)\left(x-7\right)}\ge\dfrac{1}{x-2}\\ \Leftrightarrow\dfrac{2x-8}{x^2-8x+7}\ge\dfrac{1}{x-2}\\ \Leftrightarrow\left(2x-8\right)\left(x-2\right)\ge x^2-8x+7\)
\(\Leftrightarrow2x^2-12x+16\ge x^2-8x+7\\ \Leftrightarrow x^2-4x+9\ge0\left(luôn.đúng\right)\)
ĐK: \(x\ne\dfrac{1\pm\sqrt{5}}{2}\)
TH1: \(x^2-x-1>0\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1+\sqrt{5}}{2}\\x< \dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
\(\dfrac{\left|x^2-x\right|-2}{x^2-x-1}\ge0\)
\(\Leftrightarrow\left|x^2-x\right|-2\ge0\)
\(\Leftrightarrow\left|x^2-x\right|\ge2\)
\(\Leftrightarrow\left(\left|x^2-x\right|\right)^2\ge4\)
\(\Leftrightarrow x^4-2x^3+x^2-4\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x+2\right)\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-1\end{matrix}\right.\)
TH2: \(x^2-x-1< 0\Leftrightarrow\dfrac{1-\sqrt{5}}{2}< x< \dfrac{1+\sqrt{5}}{2}\)
\(\dfrac{\left|x^2-x\right|-2}{x^2-x-1}\ge0\)
\(\Leftrightarrow\left|x^2-x\right|\le2\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x+2\right)\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\le0\)
\(\Leftrightarrow-1\le x\le2\)
\(\Rightarrow\dfrac{1-\sqrt{5}}{2}< x< \dfrac{1+\sqrt{5}}{2}\)
Vậy \(S=[2;+\infty)\cup(-\infty;-1]\cup\left(\dfrac{1-\sqrt{5}}{2};\dfrac{1+\sqrt{5}}{2}\right)\)
Đặt \(2^x=a;3^x=b;a>0;b>0\)
Bất phương trình trở thành :
\(a+a^2+2ab>2a+4b+2\Leftrightarrow\left(a+2b+1\right)\left(a-2\right)>0\Leftrightarrow a>2\)
Suy ra \(2^x>2\Leftrightarrow x>1\)
Vậy tập nghiệm của bất phương trình là \(S=\left(1;+\infty\right)\)