K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2019

\(\left|5+x\right|=3x+1\)

\(\left|5+x\right|=5+x\)khi \(5+x>0\Leftrightarrow x< -5\)

\(\left|5+x\right|=-\left(5+x\right)\)khi \(5+x\le0\Leftrightarrow x\le-5\)

Với x < - 5 ta có:

\(pt\Leftrightarrow5+x=3x+1\Leftrightarrow-2x=-4\Leftrightarrow x=2\) (thoả mãn)

Với: \(x\le-5\) ta có

\(pt\Leftrightarrow-\left(5+x\right)=3x+1\Leftrightarrow-5-x=3x+1\Leftrightarrow-4x=6\Leftrightarrow x=-\frac{3}{2}\) (loại)

Vậy tập nghiệm của phương trình này là : S = 2

(Làm ngu đó vì chưa chắc dạng)

18 tháng 11 2019

\(|5+x|=3x+1\)

\(\Leftrightarrow\orbr{\begin{cases}5+x=3x+1\\5+x=-3x-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-3x=1-5\\x+3x=-1-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-2x=-4\\4x=-6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-3}{2}\end{cases}}\)

Vậy ...

29 tháng 8 2021

1) \(2\left(x+3\right)>5\left(x-1\right)+2\Leftrightarrow2x+6>5x-5+2\Leftrightarrow3x>9\Leftrightarrow x>3\)

2) \(x^2-x\left(x+2\right)>3x-10\)

\(\Leftrightarrow x^2-x^2-2x>3x-10\Leftrightarrow5x< 10\Leftrightarrow x< 2\)

3) \(x\left(x-5\right)< \left(x+1\right)^2\)

\(\Leftrightarrow x^2-5x< x^2+2x+1\Leftrightarrow7x>-1\Leftrightarrow x>-\dfrac{1}{7}\)

4) \(15-2\left(x-7\right)< 2\left(x-3\right)-6\)

\(\Leftrightarrow15-2x+14< 2x-6-6\Leftrightarrow4x>41\Leftrightarrow x>\dfrac{41}{4}\)

1: Ta có: \(2\left(x+3\right)>5\left(x-1\right)+2\)

\(\Leftrightarrow2x+6>5x-5+2\)

\(\Leftrightarrow-3x>-9\)

hay x<3

2: Ta có: \(x^2-x\left(x+2\right)>3x-10\)

\(\Leftrightarrow x^2-x^2-2x>3x-10\)

\(\Leftrightarrow-5x>-10\)

hay x<2

3: Ta có: \(x\left(x-5\right)\le\left(x+1\right)^2\)

\(\Leftrightarrow x^2-5x-x^2-2x-1\ge0\)

\(\Leftrightarrow-7x\ge1\)

hay \(x\le-\dfrac{1}{7}\)

31 tháng 3 2022

bạn tải ảnh về r up lại đi bạn

31 tháng 3 2022

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)

\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)

\(\Leftrightarrow-28x+37\ge12\)

\(\Leftrightarrow-28x\ge12-37\)

\(\Leftrightarrow-28x\ge-25\)

\(\Leftrightarrow x\le\dfrac{25}{28}\)

Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)

b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)

\(\Leftrightarrow-6x\ge30\)

\(\Leftrightarrow x\le-5\)

Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)

\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)

\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)

\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)

\(\Leftrightarrow-11x+37< 0\)

\(\Leftrightarrow-11x< -37\)

\(\Leftrightarrow x>\dfrac{37}{11}\)

vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)

a: \(\Leftrightarrow x-5-2\left(2x-1\right)< 12\)

=>x-5-4x+2<12

=>-3x-3<12

=>-3x<15

hay x>-5

b: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)>10x\left(2x+3\right)-100\)

\(\Leftrightarrow20x^2-12+15x-5-20x^2-30x+100>0\)

=>-15x+83>0

hay x<83/15

12 tháng 3 2017

\(\Leftrightarrow5+3x^2+9x< 3x^2+6x-x-2\)

\(\Leftrightarrow9x-6x+x< 3x^2-3x^2-5-2\)

\(\Leftrightarrow2x< -7\)

\(\Leftrightarrow x< \frac{-7}{2}\)