Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}=2\)
d)
đặt A = 1 + 2 + 22 + ... + 280
2A = 2 + 22 + 23 + ... + 281
2A - A = ( 2 + 22 + 23 + ... + 281 ) - ( 1 + 2 + 22 + ... + 280 )
A = 281 - 1 > 281 - 2
e)
đặt \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}\)
\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{900}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
\(A=29-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
đặt \(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{29.30}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\)
\(=1-\frac{1}{30}=\frac{29}{30}< 1\)
\(\Rightarrow A< 29\)
So sánh C và D biết
C=1+13+13^2+...+13^13/1+13+13^2+...+13^12
D=1+11+11^2+...+11^13/1+11+11^2+...+11^12
a) Đặt \(A=\left(10^2+11^2+12^2\right)\div\left(13^2+14^2\right)\)
- Ta có: \(A=\left(100+121+144\right)\div\left(169+196\right)\)
\(\Leftrightarrow A=365\div365=1\)
Vậy \(A=1\)
b) Đặt \(B=1.2.3.....9-1.2.3.....8-1.2.3.....8^2\)
- Ta có: \(B=1.2.3.....8.\left(9-1\right)-1.2.3.....8^2\)
\(\Leftrightarrow B=1.2.3.....8.8-1.2.3.....8.8=0\)
Vậy \(B=0\)
c) Đặt \(C=\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
- Ta có: \(C=\frac{3^2.4^2.2^{32}}{11.2^{13}.2^{22}-2^{36}}\)
\(\Leftrightarrow C=\frac{3^2.2^4.2^{32}}{11.2^{35}-2^{36}}\)
\(\Leftrightarrow C=\frac{3^2.2^{36}}{2^{35}.\left(11-2\right)}\)
\(\Leftrightarrow C=\frac{9.2^{36}}{2^{35}.9}\)
\(\Leftrightarrow C=2\)
Vậy \(C=2\)
d) Đặt \(D=1152-\left(374+1152\right)+\left(-65+374\right)\)
- Ta có: \(D=1152-374-1152-65+374\)
\(\Leftrightarrow D=\left(1152-1152\right)+\left(374-374\right)-65\)
\(\Leftrightarrow D=-65\)
Vậy \(D=-65\)
a) =\(\left[\left(12+1\right)^2+\left(12+2\right)^2\right]:\left(13^2+14^2\right)\)
=1
b)=(1.2.3....8).(9-1-8)
=(1.2.3....8).0
=0
mik chỉ giải được zậy thôi.
t mik nha.
a, A = \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(A=\frac{2^{10}\left(13+65\right)}{2^8.2^2.26}=\frac{2^{10}.78}{2^{10}.26}=\frac{78}{26}=3\)
Vậy A = 3
b, \(B=\frac{72^3.54^2}{108^4}=\frac{72^3.54^2}{\left(54.2\right)^4}=\frac{72^3.54^2}{54^4.2^4}=\frac{72^3}{54^2.2^4}=\frac{\left(8.9\right)^3}{\left(6.9\right)^2.2^4}\)
\(=\frac{\left(2^3\right)^3.9^3}{6^2.9^2.2^4}=\frac{2^9.9^3}{2^2.3^2.9^2.2^4}=\frac{2^9.9^3}{2^6.9^3}=\frac{2^9}{2^6}=2^3=8\)
Vậy B = 8
c, \(C=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=\frac{11.3^{29}.3^{30}}{2^2.3^{28}}=\frac{11.3^{29}.3.3^{29}}{2^2.3^{28}}=\frac{\left(11-3\right)3^{29}}{2^2.3^{28}}\)
\(=\frac{2^3.3^{29}}{2^2.3^{28}}=2.3=6\)
Vậy C = 6
d, \(D=\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}=\frac{\left(3.2^{18}\right)^2}{11.2^{35}-\left(2^4\right)^9}=\frac{3^2.2^{36}}{11.2^{35}-2^{36}}=\frac{3^2.2^{36}}{\left(11-2\right)2^{35}}=\frac{3^2.2}{9}=2\)
Vậy D = 2
\(\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
\(=\frac{\left(3.2^{18}\right)^2}{11.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^9}\)
\(=\frac{3^2.2^{36}}{11.2^{35}-2^{36}}\)
\(=\frac{3^2.2^{36}}{2^{35}.\left(11-2\right)}\)
\(=\frac{3^2.2^{36}}{2^{35}.9}=\frac{3^2.2^{36}}{2^{35}.3^2}=2\)
\(\left(3\cdot4\cdot2^{16}\right)^2:\left(11\cdot2^{13}\cdot4^{11}-16^9\right)\\ =\left(3\cdot2^2\cdot2^{16}\right)^2:\left(11\cdot2^{13}\cdot2^{22}-2^{36}\right)\\ =3^2\cdot2^4\cdot2^{32}:\left(11\cdot2^{35}-2^{36}\right)\\ =3^2\cdot2^{36}:\left[2^{35}\cdot\left(11-2\right)\right]\\ =9\cdot2^{36}:\left(2^{35}\cdot9\right)\\ =9\cdot2^{36}:2^{35}:9\\ =2\)