K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2023

Bài 5:

a: Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>AD\(\perp\)DB tại D

=>AD\(\perp\)BC tại D

Xét ΔABC vuông tại A có AD là đường cao

nên \(AC^2=CD\cdot CB\)

b: Ta có: ΔOAE cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOE

Xét ΔOAC và ΔOEC có

OA=OE

\(\widehat{AOC}=\widehat{EOC}\)

OC chung

Do đó: ΔOAC=ΔOEC

=>\(\widehat{OAC}=\widehat{OEC}\)

mà \(\widehat{OAC}=90^0\)

nên \(\widehat{OEC}=90^0\)

=>CE là tiếp tuyến của (O)

Bài 3:

a: loading...

b: Phương trình hoành độ giao điểm là:

\(-\dfrac{1}{2}x=2x-5\)

=>\(-\dfrac{1}{2}x-2x=-5\)

=>\(-\dfrac{5}{2}x=-5\)

=>x=2

Thay x=2 vào y=-1/2x, ta được:

\(y=-\dfrac{1}{2}\cdot2=-1\)

Vậy: (d) cắt (d') tại điểm A(2;-1)

29 tháng 10 2018

Lời giải:

a) Đồ thị của hàm số y = 2x + b cắt trục tung tại điểm có tung độ bằng -3, nghĩa là khi x = 0 thì y = -3, do đó:

    -3 = 2.0 + b => b = -3

b) Đồ thị hàm số y = 2x + b đi qua điểm (1; 5), do đó ta có:

    5 = 2.1 + b => b = 3

29 tháng 10 2018

sao x=0 thì y= -3

b: Để hàm số đồng biến thì 2-m>0

=>m<2

a: Khi m=1 thì (1): y=x+2

Tham khảo

loading...

21 tháng 2 2017

Gọi ( x 0 , y 0  ) là tọa độ giao điểm của d 1  và d 2

Khi đó ta có:

( y 0  = 2 x 0  + 3 và y 0  = - x 0

⇒ - x 0  = 2 x 0  + 3 ⇔ 3 x 0  = -3 ⇔ x 0  = -1

⇒  y 0 = - x 0  = 1

Vậy tọa độ giao điểm của  d 1 và  d 2  là (- 1; 1)

27 tháng 11 2021

hello

 

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x=x-1\\y=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

8 tháng 11 2021

Chỉ tôi câu c đc ko cậu

20 tháng 12 2023

a: loading...

b: Phương trình hoành độ giao điểm là:

-2x+1=x-5

=>-2x-x=-5-1

=>-3x=-6

=>x=2

Thay x=2 vào y=x-5, ta được:

\(y=2-5=-3\)

Vậy: (d1) cắt (d2) tại A(2;-3)

c: (d1): y=x-5

=>x-y-5=0

Khoảng cách từ O(0;0) đến (d1) là:

\(d\left(O;\left(d1\right)\right)=\dfrac{\left|0\cdot1+0\cdot\left(-1\right)-5\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{5}{\sqrt{2}}\)

(d2): y=-2x+1

=>y+2x-1=0

=>2x+y-1=0

Khoảng cách từ O đến (d2) là:

\(d\left(O;\left(d2\right)\right)=\dfrac{\left|0\cdot2+0\cdot1-1\right|}{\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{5}}\)