K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi N là trung điểm của CD

Xét hình thang ACDB có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ACDB

=>ON//AC//BD

=>ON\(\perp\)AB

Xét (O) có

CM,CA là các tiếp tuyến

Do đó: OC là phân giác của góc AOM

Xét (O) có

DM,DB là các tiếp tuyến

Do đó: OD là phân giác của góc BOM

Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)(hai góc kề bù)

=>\(2\left(\widehat{COM}+\widehat{DOM}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

Xét ΔCOD vuông tại O có N là trung điểm của CD
nên N là tâm đường tròn đường kính CD

Xét (N) có

NO là bán kính

AB\(\perp\)NO tại O

Do đó: AB là tiếp tuyến của (N)

=>AB tiếp xúc với đường tròn đường kính CD

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau

Tính chất hai tiếp tuyến cắt nhau

19 tháng 7 2020

Bài này nhớ hôm trước làm rồi mà không nhớ ở câu nào nữa == , ngại tìm lại nên làm luôn :>

M I x C A O B D y

a) Ta có : OC , OD là các tia phân giác của 2 góc kề bù nên \(\widehat{COD}=90^o\) . Gọi I là trung điểm của CD tì :

                                   IC = ID = IO

nên I là tâm và IO là bán kính của đường tròn có đường kính CD

b) 

Chu vi hình thang ABDC bằng :

AB + AC + BD + CD

Ta dễ dàng chứng inh được :

AC + BD = CM + MD = CD

nên chu vi ABDC bằng AB + 2CD

Ta có AB không đổi nên chu vi ABDC nhỏ nhất và bằng 3AB .

c)

Đặt AC = x ; BD = y . Chu vi ABCD bằng :

AB + 2CD = 4 + 2( x + y )

Do chu vi ABDC bằng 14 nên :

4 + 2( x + y ) = 14

hay 

x + y = 5         (1)

Ta lại có :

xy = MC . MD

     = OM2 ( hệ thức lượng tam giác vuông COD )

nên  xy = 2= 4        (2)

Từ (1) , (2) suy ra :

\(x+\frac{4}{x}=5\Leftrightarrow x^2+4=5x\Leftrightarrow x^2-5x+4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\Leftrightarrow x=1;4\)

Vậy , nếu điểm C ( thuộc tia Ax ) cách điểm A là 1 cm hoặc 4 cm thì chu vi hình thang ABDC vẫn bằng 14cm

24 tháng 11 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Chu vi hình thang ABDC bằng: AB + 2CD (chứng minh trên)

Suy ra: 14 = 4 + 2.CD ⇒ CD = 5 (cm)

Hay CM + DM = 5 ⇒ DM = 5 – CM (1)

Tam giác COD vuông tại O có OM ⊥ CD

Theo hệ thức lượng trong tam giác vuông, ta có:

O M 2  = CM.DM ⇔ 2 2 = CM.DM ⇔ 4 = CM.DM (2)

Thay (1) vào (2) ta có: CM.(5 – CM) = 4

⇔ 5CM – C M 2 – 4 = 0 ⇔ 4CM – C M 2  + CM – 4 = 0

⇔ CM(4 – CM) + (CM – 4) = 0 ⇔ CM(4 – CM) – (4 – CM) = 0

⇔ (CM – 1)(4 – CM) = 0 ⇔ CM – 1 = 0 hoặc 4 – CM = 0

⇔ CM = 1 hoặc CM = 4

Vì CM = CA (chứng minh trên) nên AC = 1 (cm) hoặc AC = 4 (cm)

Vậy điểm C cách điểm A 1cm hoặc 4cm thì hình thang ABDC có chu vi bằng 14.

28 tháng 11 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất hai tiếp tuyến cắt nhau ta có:

CA = CM

DB = DM

Suy ra: AC + BD = CM + DM = CD

Chu vi hình thang ABDC bằng: AB + BD + DC + CA = AB + 2CD

Vì đường kính AB của (O) không thay đổi nên chu vi hình thang nhỏ nhất khi CD nhỏ nhất

Ta có: CD ≥ AB nên CD nhỏ nhât khi và chỉ khi CD = AB

Khi đó CD // AB ⇔ OM ⊥ AB

Vậy khi M là giao điểm của đường thẳng vuông góc với AB tại O với nửa đường tròn (O) thì hình thang ABDC có chu vi nhỏ nhất.

31 tháng 12 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất tiếp tuyến, ta có:

Ax ⊥ AB

By ⊥ AB

Suy ra: Ax // By hay AC // BD

Suy ra tứ giác ABDC là hình thang

Gọi I là trung điểm của CD

Khi đó OI là đường trung bình của hình thang ABDC

Suy ra: OI // AC ⇒ OI ⊥ AB

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: IC = ID = IO = (1/2).CD (tính chất tam giác vuông)

Suy ra I là tâm đường tròn đường kính CD. Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.

Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.

16 tháng 12 2018

cho tam giác ABC vuông tại A. Vẽ các đường tròn O và i đi qua A và tiếp xúc với BC tại các điểm B và C. Gọi M là trung điểm của BC. Chứng Minh

a) Các đường tròn O và i tiếp xúc với nhau

b) AM là tiếp tuyến chung của hai đường tròn O và i

c) tam giác OMI vuông

d) BC là tiếp tuyến của đường tròn ngoại tiếp tam giác OMI.

Chọn B

18 tháng 4 2020

Bạn tự vẽ hình nhé : 

1.Vì CM,CA là tiếp tuyến của (O) 

\(\Rightarrow CM\perp OM,CA\perp OA\)

\(\Rightarrow CAOM\)nội tiếp đường tròn đường kính OC

Tương tự DMOB nội tiếp đường tròn đường kính OD

2 . Vì CM,CA là tiếp tuyến của (O)

\(\Rightarrow CM=CA,OC\) là phân giác \(\widehat{AOM}\)

Tương tự DM = DB , OD là phân giác ^BOM

Mà \(\widehat{AOM}+\widehat{MOB}=180^0\)

\(\Rightarrow OC\perp OD\)

Lại có ; \(OM\perp CD\Rightarrow CM.DM=OM^2\Rightarrow CM.DM=R^2\)

Mà : \(CM=CA,DM=DB\Rightarrow AC.BD=R^2\Rightarrow AC.3R=R^2\Rightarrow AC=\frac{R}{3}\)

\(\Rightarrow S_{ABCD}=\frac{1}{2}AB\left(BD+CA\right)=\frac{1}{2}.2R.\left(3R+\frac{R}{3}\right)=\frac{10R^2}{3}\)

3.Vì CM,CA là tiếp tuyến của (O) 

\(\Rightarrow CO\perp AM=E\) là trung điểm AM

Tương tự \(OD\perp BM=F\) là trung điểm BM

\(\Rightarrow MN\) là đường trung bình \(\Delta ABC\Rightarrow EF//MN\)

Mà \(OE\perp ME,OF\perp MF,MN\perp ON\)

\(\Rightarrow M,E,N,O,F\in\) đường tròn đường kính OM 

\(\Rightarrow EFNO\) nội tiếp 

\(\Rightarrow\widehat{EFO}+\widehat{ENO}=180^0\)

Mà \(\widehat{NEF}+\widehat{ENO}=180^0\) ( EF // AB => EF//NO ) 

\(\Rightarrow EFON\) là hình thang cân