Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(y - 1)2024 + |\(x+y-1\)| = 0
Vì (y - 1)2024 ≥ 0 ∀ y; |\(x+y-1\)| ≥ 0 ∀ \(x;y\)
(y - 1)2024 + |\(x+y-1\)| = 0 khi và chỉ khi
y - 1 = 0 và \(x+y-1\) = 0
y - 1 = 0 Suy ra y = 1. thay y = 1 vào biểu thức \(x+y-1=0\) ta có:
\(x+1-1=0\) ⇒ \(x=0-1+1\) \(x=0\)
Vậy \(x=0;y=1\) thay vào biểu thức A= \(x^{2024}\) + y2024 ta được:
A = 02024 + 12024 = 0 + 1 = 1
(x + 20)⁴ + (2y - 1)²⁰²⁴ ≤ 0
⇒ (x + 20)⁴ = 0 và (2y - 1)²⁰²⁴ = 0
*) (x + 20)⁴ = 0
x + 20 = 0
x = 0 - 20
x = -20
*) (2y - 1)²⁰²⁴ = 0
2y - 1 = 0
2y = 1
y = 1/2
M = 5.(-20)².1/2 - 4.(-2).(1/2)²
= 1000 + 2
= 1002
a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)
\(\left(b-1\right)^{2024}>=0\forall b\)
Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)
Thay a=-1 và b=1 vào P, ta được:
\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)
a, F(\(x\)) = (-2 + \(\dfrac{2}{5}\)\(x\) + 1).(\(x\) - 2024)
-2 + \(\dfrac{2}{5}\)\(x\) + 1 = 0 ⇒ \(\dfrac{2}{5}\)\(x\) = 1 ⇒ \(x\) = \(\dfrac{5}{2}\);
\(x\) - \(2024\) = 0 ⇒ \(x\) = 2024
Lập bảng xét dấu ta có:
\(x\) | \(\dfrac{5}{2}\) 2024 |
\(x\) - 2024 | - - 0 + |
- 2 + \(\dfrac{2}{5}\)\(x\) + 1 | - 0 + + |
F(\(x\)) | + 0 - 0 + |
Theo bảng trên ta có: F(\(x\)) > 0 ⇔ \(\left[{}\begin{matrix}\dfrac{5}{2}>x\\2024< x\end{matrix}\right.\)
b,F(\(x\) ) = \(\dfrac{x-2}{x+5}\)
\(x\) - 2 = 0 ⇒ \(x\) = 2; \(x\) + 5 = 0 ⇒ \(x\) = -5
Lập bảng xét dấu ta có:
\(x\) | -5 2 |
\(x-2\) | - - 0 + |
\(x+5\) | - 0 + 0 + |
F(\(x\)) | + 0 - 0 + |
Theo bảng trên ta có: F(\(x\)) > 0 ⇔ \(\left[{}\begin{matrix}x< -5\\x>2\end{matrix}\right.\)
Lời giải:
$2023xy+2024yz+4047xz=2023xy+2024y(-x-y)+4047x(-x-y)$
$=-2024y^2-4047x^2-4048xy$
$=-[4047x^2+2024y^2+4048xy]$
$=-[2024(x^2+y^2+2xy)+2023x^2]=-[2024(x+y)^2+2023x^2]$
Vì $2024(x+y)^2+2023x^2\geq 0$ với mọi $x,y$
$\Rightarrow -[2024(x+y)^2+2023x^2]\leq 0$ với mọi $x,y$
Do đó nó không thể nhận giá trị dương.
a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\)
8 .x + 1 . x = 990
x . [ 8 +1 ] = 990
x . 9 = 990
x = 990 : 9
x = 110
a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)
=>\(8\cdot x+1\cdot x=3305+1\)
=>\(9x=3306\)
=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)
b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)
=>\(2^x\left(1+2+4+8\right)=480\)
=>\(2^x\cdot15=480\)
=>\(2^x=32\)
=>\(2^x=2^5\)
=>x+5
\(\left|x-1\right|>=0\forall x;\left(x+y-2\right)^{2024}>=0\forall x,y\)
Do đó: \(\left|x-1\right|+\left(x+y-2\right)^{2024}>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-x+2=-1+2=1\end{matrix}\right.\)
Thay x=1;y=1 vào Q, ta được:
\(Q=1^{2024}+1^{2024}=1+1=2\)
\(\left|x-1\right|+\left(x+y-2\right)^{2024}=0\)
Do \(\left|x-1\right|\ge0;\left(x+y-2\right)^{2024}\ge0,\forall x;y\in R\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+y-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(Q=x^{2024}+y^{2024}=1^{2024}+1^{2024}=2\)