Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tham khảo :
hai vòi nước cùng chảy vào một cái bể không có nước,trong 4h48' sẽ đầy bể.nếu mở vòi thứ nhất trong 3h và vòi thứ hai trong 4h thì được 3/4 bể nước.hỏi mỗi vòi khác chảy thì trong bao lâu mới đầy bể?
Gọi năng suất vòi 1 là x (x>0) (năng suất ở đây hiểu là sau 1 giờ thì vòi 1 chảy được 1 lượng nước nào đó). Gọi năng suất vòi 2 là y (y>0) => năng suất chung cả hai vòi là x+y. Do sau 4,8 giờ (4h48') thì 2 vòi chảy cùng đầy bể nên 1 giờ thì 2 vòi chảy được lượng nước là 1/4,8 bể = 5/24 bể => x+y =5/24 (1). Do mở vòi thứ nhất trong 3h và vòi thứ hai trong 4h thì được 3/4 bể nước nên ta có phương trình 3x+4y=3/4 (bể) (2), từ (1) và (2) => ta có hệ phương trình x+y =5/24 và 3x+4y=3/4. Giải hệ phương trình này ta được x=1/12 và y=1/8. => thời gian chảy đẩy bể của vòi 1 là 1/x = 12h, và tương tự thì vòi 2 là 8h

Gọi thời gian chảy riêng để đầy bể của vòi I, vòi II lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hpt \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{12}\\\frac{8}{a}+\frac{8}{b}+\frac{\left(3+\frac{1}{2}\right).2}{b}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{28}\\\frac{1}{b}=\frac{1}{21}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=28\\b=21\end{cases}}\)
Vậy ...

Gọi thời gian chảy riêng đầy bể của vòi 1 và vòi 2 lần lượt là x(giờ) và y(giờ)
(Điều kiện: x>0 và y>0)
Trong 1 giờ, vòi 1 chảy được \(\dfrac{1}{x}\left(bể\right)\)
Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{y}\left(bể\right)\)
Trong 1 giờ, hai vòi chảy được \(\dfrac{1}{15}\left(bể\right)\)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\left(1\right)\)
Trong 5 giờ, vòi 1 chảy được \(\dfrac{5}{x}\left(bể\right)\)
Trong 3 giờ, vòi 2 chảy được \(3\cdot\dfrac{1}{y}=\dfrac{3}{y}\left(bể\right)\)
nếu vòi 1 chảy trong 5 giờ và vòi 2 chảy trong 3 giờ được 30% bể nước nên \(\dfrac{5}{x}+\dfrac{3}{y}=30\%=\dfrac{3}{10}\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\\\dfrac{5}{x}+\dfrac{3}{y}=\dfrac{3}{10}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=\dfrac{1}{3}\\\dfrac{5}{x}+\dfrac{3}{y}=\dfrac{3}{10}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{y}=\dfrac{1}{3}-\dfrac{3}{10}=\dfrac{1}{30}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=60\\\dfrac{1}{x}=\dfrac{1}{15}-\dfrac{1}{60}=\dfrac{3}{60}=\dfrac{1}{20}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=60\\x=20\end{matrix}\right.\left(nhận\right)\)
Vậy: Thời gian chảy riêng đầy bể của vòi 1 là 20 giờ, của vòi 2 là 60 giờ

Gọi thời gian vòi thứ nhất chảy riêng đầy bể là x (giờ) (x>6)
thời gian vòi thứ hai chảy riêng đầy bể là y (giờ) (y>6)
Hai vòi nước cùng chảy vào một cái bể không có nước trong 6 giờ thì đầy bể
⇒ 1 x + 1 y = 1 6 (1)
vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2/5 bể ⇒ 2. 1 x + 3. 1 y = 2 5 (2)
Từ (1) và (2) ta có hệ phương trình 1 x + 1 y = 1 6 2. 1 x + 3. 1 y = 2 5 ⇔ x = 10 y = 15
Đối chiếu với điều kiện, giá trị x=10; y=15 thỏa mãn.
Vậy thời gian vòi thứ nhất chảy riêng đầy bể là 10 giờ, thời gian vòi thứ hai chảy riêng đầy bể là 15 giờ.

Gọi x(giờ) là thời gian vòi 1 chảy một mình đầy bể
Gọi y(giờ) là thời gian vòi 2 chảy một mình đầy bể
(Điều kiện: x>5; y>5)
Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)
Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)
Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)(1)
Vì khi vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 2 giờ thì được 12/25 bể nên ta có phương trình:
\(\dfrac{3}{x}+\dfrac{2}{y}=\dfrac{12}{25}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\\\dfrac{3}{x}+\dfrac{2}{y}=\dfrac{12}{25}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{5}\\\dfrac{3}{x}+\dfrac{2}{y}=\dfrac{12}{25}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{3}{25}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{25}{3}\\\dfrac{1}{x}=\dfrac{3}{5}-\dfrac{3}{25}=\dfrac{12}{25}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{25}{3}\\x=\dfrac{25}{12}\end{matrix}\right.\)(thỏa ĐK)
Vậy: Vòi 1 cần \(\dfrac{25}{12}h\) để chảy một mình đầy bể
Vòi 2 cần \(\dfrac{25}{3}h\) để chảy một mình đầy bể
gọi x; y lần lượt là thời gian mà mỗi vòi chảy một mình đầy bể (x; y > 0)
trong 1 giờ vòi 1 chảy được: \(\frac{1}{x}\left(\right.\) bể)
trong 1 giờ vòi 2 chảy được: \(\frac{1}{y}\) (bể)
theo đề ta có: \(\frac{1}{x}+\frac{1}{y}=\frac15\left(1\right)\)
trong 3 giờ vòi 1 chảy được: \(\frac{3}{x}\) (bể)
trong 4 giờ vòi 2 chảy được: \(\frac{4}{y}\left(\right.\)bể)
theo đề ta có: \(\frac{3}{x}+\frac{4}{y}=\frac23\left(2\right)\)
từ (1) và (2) ta có hệ phương trình:
\(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac15\\ \frac{3}{x}+\frac{4}{y}=\frac23\end{cases}\)
giải ra ta được: \(\begin{cases}x=7,5\\ y=15\end{cases}\left(TM\right)\)
vậy thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là 7,5 giờ và 15 giờ