K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2021

Gọi chiều dài chiều rộng ban đầu của hình chữ nhật là: x;y (m) 

ĐK : x>5; y > 0 , x >y 

Chiều dài của hình chữ nhật khi giảm đi 5m là : x - 5 (m)

Chiều rộng tăng 2m nên ta có chiều rộng lúc sau là : y + 2 (m)

Vì nếu tăng chiều rộng 2m và giảm chiều dài 5m thì thu được 1 hình vuông nên ta có : 

                   x - 5 = y + 2

               <=> x - y = 7 (1)

Diện tích hình chữ nhật ban đầu là: xy = 120(m²) (2)

Từ (1) và (2) ta có hệ :

         x - y = 7 và xy = 120 (thế)

Giải hệ ta được x = 15(TMDK ẩn)

                          y = 8(TMDK ẩn)

Vậy chiều dài và chiều rộng của hình chữu nhật đó lần lượt là 15m và 8m

18 tháng 5 2021

Tham khảo

Gọi chiều dài của hình chữ nhật là a(m)

Chiều rộng của hình chữ nhật là b(m) Với 0<b<a<120

Theo đề bài:

Diện tích của hcn là 120m^2 => ab=120m^2 (1)

Tăng chiều rộng giảm chiều dài chứ nhỉ?

Nếu tăng chiều rộng 2m và giảm chiều dài 5m thì được hình vuông =>b+2=a-5

\(\left\{{}\begin{matrix}b+2=a-5\\ab=120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a-7\\ab=120\end{matrix}\right.\)

⇒a\(^2\)-7a-120=0

(a−15)(a+8)=0⇒a=15⇒b=8

gọi chiều dài hcn là x (m) ( x > 8 )

\(\Rightarrow\)chiều rộng hcn là x-8(m)

theo bài ra ta có pt

( x-8+2) (x - 5 )= 210

(x-6)(x-5)=210

x2 - 11x + 30=210

x2 - 11x - 180= 0

\(\Delta\)= 121 + 4 . 180=841 

\(\Rightarrow\)pt có 2 nghiệm pb x1 = \(\frac{11+\sqrt{841}}{2}\)=20 ( TM)

                                       x2\(\frac{11-\sqrt{841}}{2}\)=-9(KTM)

vậy......

#mã mã#

29 tháng 4 2019

mơn nhìu nha

13 tháng 5 2022

Gọi \(x\left(m\right)\) là chiều rộng của hình chữ nhật ban đầu \(\left(x>0\right)\)

Vì hình chữ nhật ban đầu có diện tích bằng 120m2 nên chiều dài của hình chữ nhật ban đầu là \(\dfrac{120}{x}\left(m\right)\)

Từ đây ta giới hạn điều kiện của \(x\): \(\dfrac{120}{x}>x\Leftrightarrow x^2< 120\Leftrightarrow x< 2\sqrt{30}\) (vì \(x>0\) nên nhân cả 2 vế của BPT với x thì BPT không đổi chiều) từ đó \(0< x< 2\sqrt{30}\)

Chiều rộng lúc sau là \(x+2\left(m\right)\)

Chiều dài lúc sau là \(\dfrac{120}{x}-5\left(m\right)\)

Vì hình lúc sau là 1 hình vuông nên ta có pt \(x+2=\dfrac{120}{x}-5\)\(\Leftrightarrow x+7-\dfrac{120}{x}=0\) \(\Rightarrow x^2+7x-120=0\) (1)

pt (1) có \(\Delta=7^2-4.1.\left(-120\right)=529>0\)

Vậy (1) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-7+\sqrt{529}}{2}=8\left(nhận\right)\\x_2=\dfrac{-7-\sqrt{529}}{2}=-15\left(loại\right)\end{matrix}\right.\)

Do đó chiều rộng của hình chữ nhật là 8m, chiều dài hình chữ nhật là \(\dfrac{120}{8}=15\left(m\right)\)

11 tháng 3 2016

gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)

diện tích thửa ruộng là x.y (m2)

nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy

nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy 

từ đó ta tìm được diện tích là 308m2

6 tháng 8 2019

Gọi chiều dài của tấm bìa là x (x > 3) (dm)

⇒ Chiều rộng của tấm bìa là x – 3 (dm)

Nếu tăng chiều dài 1 dm và giảm chiều rộng 1 dm thì diện tích là 66 d m 2  nên ta có phương trình:

(x + 1)(x – 3 – 1) = 66

⇔ (x + 1)(x – 4 ) = 66

⇔ x 2  – 3x – 4 – 66 = 0

⇔  x 2  – 3x – 70 = 0

Δ = 3 2 - 4.(-70) = 289 ⇒ ∆ = 17

⇒ Phương trình đã cho có 2 nghiệm

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do x > 3 nên x =10

Vậy chiều dài của tấm bìa là 10 dm

Chiều rộng của tấm bìa là 7 dm.

NV
1 tháng 6 2021

Gọi chiều dài của hcn là x>0 (cm), chiều rộng hcn là y> 0(cm)

Do chiều dài gấp 3 chiều rộng nên ta có pt: \(x=3y\) (1)

Khi tăng chiều dài và chiều rộng thêm 5cm thì chiều dài và chiều rộng tương ứng là: \(x+5\) và \(y+5\) (cm)

Do diện tích khi tăng kích thước là 153 cm2 nên ta có pt:

\(\left(x+5\right)\left(y+5\right)=153\) (2)

Từ (1) và (2) ta có hệ:

\(\left\{{}\begin{matrix}x=3y\\\left(x+5\right)\left(y+5\right)=153\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\\left(3y+5\right)\left(y+5\right)=153\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\3y^2+20y-128=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\\left[{}\begin{matrix}y=4\\y=-\dfrac{32}{3}< 0\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=4\end{matrix}\right.\)

Vậy hcn ban đầu dài 12 rộng 4 cm

1 tháng 6 2021

Gọi chiều dài là a (cm), chiều rộng là b (cm)

(ĐK: a;b > 0)

Chiều dài gấp 3 lần chiều rộng \(\Rightarrow a=3b\)

Diện tích mới sau khi tăng chiều dài và chiều rộng 5cm là 153cm2 \(\Rightarrow\left(a+5\right)\left(b+5\right)=153\)

Ta lập hệ phương trình:

\(\left\{{}\begin{matrix}a=3b\\\left(a+5\right)\left(b+5\right)=153\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\\left(3b+5\right)\left(b+5\right)=153\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\3b^2+15b+5b+25=153\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\3b^2+20b-128=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\\left(b-4\right)\left(3b+32\right)=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\\left[{}\begin{matrix}b=4\left(tmđk\right)\\b=\dfrac{-32}{3}\left(ktmđk\right)\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3.4=12\left(tmđk\right)\\b=4\end{matrix}\right.\)

Vậy chiều dài hình chữ nhật là 12cm, chiều rộng hình chữ nhật là 4cm

DD
14 tháng 1 2022

Gọi chiều dài hình chữ nhật ban đầu là \(x\left(m\right),x>0\).

Chiều rộng là: \(\frac{300}{x}\left(m\right)\)

Chiều rộng mới là: \(\frac{300}{x}-3\left(m\right)\)

Chiều dài mới là: \(x+5\left(m\right)\)

Ta có: \(\left(x+5\right)\left(\frac{300}{x}-3\right)=300\)

\(\Leftrightarrow300-3x+\frac{1500}{x}-15=300\)

\(\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-25\left(l\right)\end{cases}}\)

Vậy chiều dài ban đầu là \(20m\)chiều rộng ban đầu  là \(15m\).

1500 đâu ra vậy bạn

18 tháng 1 2016

jup xem nào tui chơi bang bang nè

5 tháng 5 2020

Nửa chu vi của hình chữ nhật là :

  36 : 2 = 18(cm)

Gọi x là chiều dài hình chữ nhật(0<x<18) (cm)

    y là chiều rộng hình chữ nhật (0<y<x<18) (cm)

ta có :nếu tăng chiều dài thêm 2cm vá giảm chiều rộng đi 3cm thì diện tích giảm 20\(cm^2\)nên ta có phương trình :

             \(\left(x+2\right)\cdot\left(y-3\right)=20\left(1\right)\)

lại có :nửa chu vi hình chữ nhật là 18cm nên ta có phương trình;

                \(x+y=18\left(2\right)\)

từ (1) và (2) ta có hệ phương trình:

\(\hept{\begin{cases}\left(x+2\right)\cdot\left(y-3\right)=20\\x+y=18\end{cases}}\)