Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này ez thôi, làm mãi rồi.
Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
=>\(\dfrac{xy+yz+xz}{xyz}=0\)
=> xy+yz+zx=0
=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)
Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)
y2+2xz=y2+xz-xy-yz=(x-y)(z-y)
z2+2xy=z2+xy-yz-xz=(x-z)(y-z)
=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)
\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{1}{xy+x+xyz}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{1}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz}{y+1+yz}+\dfrac{1}{y+yz+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz+1}{y+1+yz}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz+xyz}{y+xyz+yz}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{y\left(z+xz\right)}{y\left(1+xz+z\right)}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{z+xz+1}{xz+z+1}\)
\(A=1\)
a, A=xy+7x-3y-21 b,B= xyz+xz-yz-z+xy+x-y-1
A=(xy+7x)-(3y+21) B=(xyz+xz)-(yz+z)+(xy+x)-(y+1)
A=x(y+7)-3(y+7) B=xz(y+1)-z(y+1)+x(y+1)-(y+1)
A=(y+7)(x-3) B=(y+1)(xz-z+x-1)
Thay x=103, y=-17 vào biểu thức ta có: B=(y+1)[(xz-z)+(x-1)]
A=(-17+7)(103-3) B=(y+1)[z(x-1)+(x-1)]
A=(-10)(100) B=(y+1)(x-1)(z+1)
A=-1000 Thay x=-9, y=-21, z=-31 vào biểu thức ta có:
B=(-21+1)(-9-1)(-31+1)
B=(-20)(-10)(-30)
B=200(-30)
B=-6000
ta có x/xy+x+1 +y/yz+y+1 +z/xz+z+1
=xz/xyz+xz+z +xyz/xyz^2+xyz+xz +z/xz+z+1
=xz/1+xz+z +1/z+1+xz +z/ xz+z+1
=xz+z+1 /xz+z+1 =1
\(A=\dfrac{xyz.x}{xy+xyz.x+xyz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{xyz+yz+y}\)
\(=\dfrac{xz}{1+xz+z}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)
\(=\dfrac{xyz}{y+xyz+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)
\(=\dfrac{2019}{y+2019+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)
\(=\dfrac{yz+y+2019}{yz+y+2019}=1\)
a: A=y(x-4)-5(x-4)
=(x-4)(y-5)
Khi x=14 và y=5,5 thì A=(14-4)(5,5-5)=0,5*10=5
b: \(B=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)
Khi x=5,2 và y=4,8 thì B=(5,2+4,8)(5,2-5)
=0,2*10=2
d: Khi x=5,75 và y=4,25 thì
D=5,75^3-5,75^2*4,25+4,25^3
=8087/64