Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
c)
$-x + \dfrac{3}2 = x + \dfrac{3}5$
$\Rightarrow -x - x = \dfrac{3}5 - \dfrac{3}2$
$\Rightarrow -2x = -\dfrac{9}{10}$
$\Rightarrow 2x = \dfrac{9}{10}$
$\Rightarrow x = \dfrac{9}{10} \div 2$
$\Rightarrow x = \dfrac{9}{20}$
Vậy, $x = \dfrac{9}{20}.$
a)\(\dfrac{2}{7}+\dfrac{5}{3}-\dfrac{8}{21}=\dfrac{6}{21}+\dfrac{35}{21}-\dfrac{8}{21}=\dfrac{6+35-8}{21}=\dfrac{33}{21}=\dfrac{11}{7}\)
b)\(\dfrac{3}{7}.\dfrac{-1}{12}-\dfrac{3}{7}.\dfrac{11}{12}+\dfrac{3}{7}=-\dfrac{3}{84}-\dfrac{33}{84}+\dfrac{36}{84}=\dfrac{-3-33+36}{84}=\dfrac{0}{84}=0\)
Câu 4:
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra:HD=HE
a: Ta có: \(\widehat{bMB}=\widehat{NMC}\)(hai góc đối đỉnh)
mà \(\widehat{bMB}=50^0\)
nên \(\widehat{NMC}=50^0\)
Ta có: \(\widehat{MNC}+\widehat{aNC}=180^0\)(hai góc kề bù)
=>\(\widehat{MNC}+110^0=180^0\)
=>\(\widehat{MNC}=70^0\)
Xét ΔMNC có \(\widehat{NMC}+\widehat{MNC}+\widehat{C}=180^0\)
=>\(\widehat{C}+50^0+70^0=180^0\)
=>\(\widehat{C}=60^0\)
b: Ta có: \(\widehat{NMB}+\widehat{NMC}=180^0\)(hai góc kề bù)
=>\(\widehat{NMB}+50^0=180^0\)
=>\(\widehat{NMB}=130^0\)
Ta có: MN//AB
=>\(\widehat{CMN}=\widehat{CBA}\)(hai góc đồng vị)
=>\(\widehat{CBA}=50^0\)
BN là phân giác của góc CBA
=>\(\widehat{NBM}=\dfrac{\widehat{ABC}}{2}=25^0\)
Xét ΔNMB có \(\widehat{NMB}+\widehat{BNM}+\widehat{NBM}=180^0\)
=>\(\widehat{MNB}=180^0-130^0-25^0=25^0\)
c: BN là phân giác của góc CBA
=>\(\widehat{ABN}=\dfrac{\widehat{ABC}}{2}=25^0\)
Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)
=>\(\widehat{BAN}+60^0+50^0=180^0\)
=>\(\widehat{BAN}=70^0\)
Xét ΔBAN có \(\widehat{BAN}+\widehat{ABN}+\widehat{ANB}=180^0\)
=>\(\widehat{ANB}=180^0-75^0-25^0=85^0\)