Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Chu vi hình chữ nhật:
\(\left(4\dfrac{3}{7}+2\dfrac{1}{5}\right).2=\left(\dfrac{31}{7}+\dfrac{11}{5}\right).2=\dfrac{232}{35}.2=\dfrac{464}{35}\left(m\right)\)
Diện tích hình chữ nhật:
\(4\dfrac{3}{7}.2\dfrac{1}{5}=\dfrac{31}{7}.\dfrac{11}{5}=\dfrac{341}{35}\left(m^2\right)\)
Câu 3:
f: \(\Leftrightarrow\left[{}\begin{matrix}x-1=8\\x-1=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-7\end{matrix}\right.\)
2n+3+3n+1+2n+3+2n+2
=2n.23+3n.3+2n.23+2n.22
=2n(23+23)+3n.3+2n.22
=2n.24+3n.3+2n.22
=2n(24+22)+3n.3
=2n.20+3n.3
Đặt \(f\left(x\right)=2.\left(2-x\right)+\left(x-2\right)^2\)
Ta có: \(f\left(x\right)=0\Leftrightarrow2.\left(2-x\right)+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2.\left(2-x\right)=0\\\left(x-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=2\end{cases}}\)
Vậy x=2 là nghiệm của đa thức trên
Lời giải:
Để 2 tam giác bằng nhau theo TH g.c.g thì cần thêm điều kiện:
TH1:
$\widehat{A}=\widehat{A'}$
$\widehat{B}=\widehat{B'}$
TH2:
$\widehat{A}=\widehat{A'}$
$\widehat{C}=\widehat{C'}$
TH3:
$\widehat{B}=\widehat{B'}$
$\widehat{C}=\widehat{C'}$
Cách 1:
\(\widehat{A}=\widehat{A'}\) và \(\widehat{B}=\widehat{B'}\)
Cách 2:
\(\widehat{A}=\widehat{A'}\) và \(\widehat{C}=\widehat{C'}\)
Cách 3:
\(\widehat{B}=\widehat{B'}\) và \(\widehat{C}=\widehat{C'}\)
xx'//yy'
=>\(\widehat{xAB}+\widehat{yBz}=180^0\)(hai góc trong cùng phía)
=>\(\widehat{yBz}+70^0=180^0\)
=>\(\widehat{yBz}=110^0\)
xx'//yy'
=>\(\widehat{xAB}=\widehat{yBz'}\)(hai góc đồng vị)
=>\(\widehat{yBz'}=70^0\)