Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Ta có: \(\left\{{}\begin{matrix}O\in AC\in\left(SAC\right)\\O\in BD\in\left(SBD\right)\end{matrix}\right.\) \(\Rightarrow O=\left(SAC\right)\cap\left(SBD\right)\)
\(S=\left(SAC\right)\cap\left(SBD\right)\)
\(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)
Do \(AB||CD\Rightarrow\) giao tuyến của (SAC) và (SBD) là một đường thẳng song song AB và CD
Qua S kẻ đường thẳng \(d||AB\)
Do \(S=\left(SAB\right)\cap\left(SCD\right)\Rightarrow d=\left(SAB\right)\cap\left(SCD\right)\)
b.
\(O\in AC\in\left(AMC\right)\Rightarrow OM\in\left(AMC\right)\)
\(\left\{{}\begin{matrix}M\in SB\\O\in BD\end{matrix}\right.\) \(\Rightarrow OM\in\left(SBD\right)\) \(\Rightarrow OM=\left(AMC\right)\cap\left(SBD\right)\)
Trong mp (SBD), kéo dài OM cắt SD tại Q
\(\Rightarrow Q=SD\in\left(AMC\right)\)
c.
Gọi E là trung điểm SA
Do G là trọng tâm tam giác SAB \(\Rightarrow G\in BE\) và \(BG=\dfrac{2}{3}BE\Rightarrow\dfrac{BG}{BE}=\dfrac{2}{3}\) (1)
Do \(AB||CD\) , áp dụng định lý Talet: \(\dfrac{OD}{OB}=\dfrac{CD}{AB}=\dfrac{1}{2}\Rightarrow\dfrac{OD}{OB}+1=\dfrac{3}{2}\Rightarrow\dfrac{OD+OB}{OB}=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{BD}{OB}=\dfrac{3}{2}\Rightarrow\dfrac{BO}{BD}=\dfrac{2}{3}\) (2)
(1);(2) \(\Rightarrow\dfrac{BG}{BE}=\dfrac{BO}{BD}\Rightarrow OG||ED\) (Talet đảo)
Mà \(ED\in\left(SAD\right)\Rightarrow OG||\left(SAD\right)\)
Chọn ngẫu nhiên một người đàn ông
Gọi A là biến cố “Người đó nghiện thuốc lá”, B là biến cố “Người đó mắc bệnh viêm phổi”
Khi đó, AB là biến cố “Người đó nghiện thuốc lá và mắc bệnh viêm phổi”
Ta có \(P\left( A \right) = \frac{{752 + 1236}}{{5000}} = \frac{{497}}{{1250}};P\left( B \right) = \frac{{752 + 575}}{{5000}} = \frac{{1327}}{{5000}}\)
\( \Rightarrow P\left( A \right).P\left( B \right) = \frac{{497}}{{1250}}.\frac{{1327}}{{5000}} = 0,10552304\)
Mặt khác \(P\left( {AB} \right) = \frac{{752}}{{5000}} = 0,1504\)
Vì \(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) nên hai biến cố A và B không độc lập.
Vậy việc nghiện thuốc lá và mắc bệnh viêm phổi có liên quan với nhau.
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left|x\right|+\sqrt{x^2+x}}{x+10}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x+\sqrt{x^2+x}}{x+10}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-1+\sqrt{1+\dfrac{1}{x}}}{1+\dfrac{10}{x}}=\dfrac{-1+\sqrt{1}}{1}=\dfrac{-1+1}{1}=0\)
a: Trong mp(SBC), gọi M là giao điểm của SO với BC
Chọn mp(SBC) có chứa SO
\(SO\subset\left(SBC\right);SO\subset\left(SAO\right)\)
Do đó: (SBC) giao (SAO)=SO
Vì M là giao điểm của CB với SO
nên M là giao điểm của CB với mp(SAO)
b: Gọi N là giao điểm của AC và BD
\(N\in AC\subset\left(SAC\right)\)
\(N\in BD\subset\left(SBD\right)\)
Do đó: \(N\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên (SAC) giao (SBD)=SN
c: Xét (SAB) và (SCD) có
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
AB//CD
Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
d: AB//CD
CD\(\subset\)(SCD)
AB không nằm trong mp(SCD)
Do đó: AB//(SCD)
Điểm ngưỡng để đưa ra danh sách 25% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là tứ phân vị thứ ba.
Ta có: cỡ mẫu n = 35.
Tứ phân vị thứ ba \({Q_3}\) là \({x_{27}}\). Do \({x_{27}}\) đều thuộc nhóm \(\left[ {30;40} \right)\) nên nhóm náy chứa \({Q_3}\). Do đó,
\(p = 3;\;\;{a_3} = 30;\;\;{m_3} = 6;\;\;{m_1} + {m_2} = 4 + 19 = 23;\;{a_4} - {a_3} = 10\)
Ta có: \({Q_3} = 30 + \frac{{\frac{{3 \times 35}}{4} - 23}}{6} \times 10 = 35,42\).
a/
\(\Leftrightarrow3cos^2x-4sinx.cosx+1-cos^2x=1\)
\(\Leftrightarrow2cos^2x-4sinx.cosx=0\)
\(\Leftrightarrow2cosx\left(cosx-2sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\tanx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=arctan\left(\frac{1}{2}\right)+k\pi\end{matrix}\right.\)
b.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)
\(4-3tanx+3tan^2x=1+tan^2x\)
\(\Leftrightarrow2tan^2x-3tanx+3=0\)
Pt vô nghiệm
Sau mỗi phút, số lượng virus tăng lên gấp 3 lần trước đó
=>Số lượng con vius có sau 11 phút sẽ tăng thêm \(3^{11}\)(lần)
=>Sau 11 phút, số lượng con virus là:
\(5\cdot3^{11}=885735\left(con\right)\)
a/ Qua S dựng đường thẳng d//AD
d//AD; \(S\in\left(SAD\right)\Rightarrow d\in\left(SAD\right)\)
d//AD;AD//BC => d//BC mà \(S\in\left(SBC\right)\Rightarrow d\in\left(SBC\right)\)
=> d chính là giao tuyến của (SAD) và (SBC)
b/
Trong (SAC) gọi I là giao của AM với SO
\(I\in SO;SO\in\left(SBD\right)\Rightarrow I\in\left(SBD\right)\)
=> I là giao của AM với (SBD)
Ta có BC//AD \(\Rightarrow\dfrac{OC}{OA}=\dfrac{BC}{AD}=\dfrac{1}{2}\)
2 tg SAM và tg CAM có chung đường cao từ A->SC và MS=MC nên \(S_{SAM}=S_{CAM}=S\)
2 tg AMO và tg CMO có chung đường cao từ M->AC nên
\(\dfrac{S_{AMO}}{S_{CMO}}=\dfrac{OA}{OC}=2\Rightarrow\dfrac{S_{AMO}}{2}=S_{CMO}=\dfrac{S_{AMO}+S_{CMO}}{2+1}=\dfrac{S_{CAM}}{3}\)
\(\Rightarrow\dfrac{S_{AMO}}{S_{CAM}}=\dfrac{S_{AMO}}{S_{SAM}}=\dfrac{2}{3}\)
2 tg AMO và tg SAM có chung AM nên
\(\dfrac{S_{AMO}}{S_{SAM}}=\) đường cao từ O->AM/đường cao từ S->AM \(=\dfrac{2}{3}\)
2 tg OMI và tg SMI có chung IM nên
\(\dfrac{S_{OMI}}{S_{SMI}}=\)đường cao từ O->AM/đường cao từ S->AM\(=\dfrac{2}{3}\)
2tg OMI và tg SMI có chung đường cao từ M->SO nên
\(\dfrac{S_{OMI}}{S_{SMI}}=\dfrac{OI}{SI}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{OI}{2}=\dfrac{SI}{3}=\dfrac{OI+SI}{2+3}=\dfrac{SO}{5}\Rightarrow\dfrac{SI}{SO}=\dfrac{3}{5}\)
c/
Gọi P là trung điểm của SA, Xét tg SAD có
PA=PS; ND=NS (gt) => PN là đường trung bình của tg SAD
=> PN//AD và \(PN=\dfrac{1}{2}AD\)
Ta có
PN//AD; AD//BC => PN//BC
\(AD=2BC\Rightarrow BC=\dfrac{1}{2}AD\)
=> PN//BC và \(PN=BC=\dfrac{1}{2}AD\)
=> BCNP là hbh (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)
=> CN//BP (cạnh đối hbh) mà \(BP\in\left(SAB\right)\) => CN//(SAB)
a.
Qua S kẻ đường thẳng d song song AD và BC
Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\\S\in d\\d||AD\end{matrix}\right.\) \(\Rightarrow d\in\left(SAD\right)\)
\(\left\{{}\begin{matrix}S\in\left(SBC\right)\\S\in d\\d||BC\end{matrix}\right.\) \(\Rightarrow d\in\left(SBC\right)\)
\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)
b.
Trong mp (SAC), nối AM cắt SO tại I
\(\left\{{}\begin{matrix}O\in BD\in\left(SBD\right)\\S\in\left(SBD\right)\end{matrix}\right.\) \(\Rightarrow SO\in\left(SBD\right)\)
\(I\in SO\Rightarrow I\in\left(SBD\right)\)
\(\Rightarrow I=AM\cap\left(SBD\right)\)
Do AD song song BC, áp dụng định lý Thales:
\(\dfrac{OA}{OC}=\dfrac{AD}{BC}=2\) \(\Rightarrow OA=2OC=2\left(AC-OA\right)\Rightarrow\dfrac{OA}{AC}=\dfrac{2}{3}\)
Áp dụng định lý Menelaus:
\(\dfrac{OA}{AC}.\dfrac{CM}{MS}.\dfrac{SI}{IO}=1\Leftrightarrow\dfrac{2}{3}.1.\dfrac{SI}{IO}=1\)
\(\Rightarrow2SI=3IO=3\left(SO-SI\right)\)
\(\Rightarrow5SI=3SO\Rightarrow\dfrac{SO}{SI}=\dfrac{3}{5}\)