K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2
AH
Akai Haruma
Giáo viên
5 tháng 7 2024

Lời giải:

Đặt $\frac{1}{x-1}=a; \frac{1}{y+2}=b$ thì HPT trở thành:

\(\left\{\begin{matrix} 2a+b=2\\ 8a-3b=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=2-2a\\ 8a-3b=1\end{matrix}\right.\Rightarrow 8a-3(2-2a)=1\)

$\Leftrightarrow 8a-6+6a=1$

$\Leftrightarrow 14a=7\Leftrightarrow a=\frac{1}{2}$

$b=2-2a=2-2.\frac{1}{2}=1$

Vậy $\frac{1}{x-1}=\frac{1}{2}; \frac{1}{y+2}=1$

$\Leftrightarrow x-1=2; y+2=1$

$\Leftrightarrow x=3; y=-1$

D
datcoder
CTVVIP
5 tháng 7 2024

ĐK \(\left\{{}\begin{matrix}x\ne1\\y\ne-2\end{matrix}\right.\)

Đặt \(a=\dfrac{1}{x-1};b=\dfrac{1}{y+2}\left(a\ne0;b\ne0\right)\)

Hệ phương trình trở thành \(\left\{{}\begin{matrix}2a+b=2\\8a-3b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2-2a\\8a-3.\left(2-2a\right)=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=2-2a\\14a-6=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=2-2a\\14a=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=2-2.0,5\\a=0,5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=1\\a=0,5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=0,5\\b=1\end{matrix}\right.\)

\(a=0,5\Rightarrow\dfrac{1}{x-1}=0,5\Rightarrow x-1=2\Rightarrow x=3\left(tm\right)\)

\(b=1\Rightarrow\dfrac{1}{y+2}=1\Rightarrow y+2=1\Rightarrow y=-1\left(tm\right)\)

Vậy hệ phương trình có nghiệm x = 3 và y = -1

1
NV
19 tháng 1 2024

ĐKXĐ: \(x+2y\ne0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x+2y}=\dfrac{7}{4}\\-\dfrac{5}{2}x+2+\dfrac{4}{x+2y}=-2\end{matrix}\right.\)

Đặt \(\dfrac{1}{x+2y}=z\) ta được hệ:

\(\left\{{}\begin{matrix}x-z=\dfrac{7}{4}\\-\dfrac{5}{2}x+4z=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\z=\dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\\dfrac{1}{x+2y}=\dfrac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\x+2y=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

NV
22 tháng 1 2024

Gọi số xe dự định tham gia chở hàng là x (xe) với x>4, x nguyên dương

Mỗi xe dự định chở khối lượng hàng là: \(\dfrac{20}{x}\) (tấn)

Số xe thực tế tham gia chở hàng là: \(x-4\) (xe)

Thực tế mỗi xe phải chở số hàng là: \(\dfrac{20}{x-4}\) (tấn)

Do thực tế mỗi xe phải chở nhiều hơn dự định là 5/6 tấn hàng nên ta có pt:

\(\dfrac{20}{x-4}-\dfrac{20}{x}=\dfrac{5}{6}\)

\(\Rightarrow24x-24\left(x-4\right)=x\left(x-4\right)\)

\(\Leftrightarrow x^2-4x-96=0\)

\(\Rightarrow\left[{}\begin{matrix}x=12\\x=-8\left(loại\right)\end{matrix}\right.\)

Vậy thực tế có \(12-4=8\) xe tham gia vận chuyển

12 tháng 1 2024

M A O B E F H K P Q

a/

Ta có

AE = HE; BF = HF (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau)

=> AE + BF = HE + HF = EF (dpcm)

b/ Gọi P; K; Q lần lượt là giao của OE; OM; OF với (O)

Ta có

sđ cung PA = sđ cung PH (Hai tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm chia đôi cung chắn bởi 2 tiếp điểm)

sđ cung QB = sđ cung QH (lý do như trên)

=> sđ cung PH + sđ cung QH = sđ cung PA + sđ cung QB

=> sđ cung APH = sđ cung BQH

Mà sđ cung APH + sđ cung BQH = sđ cung AKB

=> sđ cung APH = sđ cung BQH = \(\dfrac{sđcungAKB}{2}\) (1)

Ta có

sđ cung KA = sđ cung KB (Hai tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm chia đôi cung chắn bởi 2 tiếp điểm)

Mà sđ cung KA + sđ cung KB = sđ cung AKB

=> sđ cung KA = sđ cung KB = \(\dfrac{sđcungAKB}{2}\) (2)

Ta có

\(sđ\widehat{MOA}=sđcungKA=\dfrac{sđcungAKB}{2}\) (góc ở tâm đường tròn) (3)

\(sđ\widehat{FOE}=sđcungPHQ=sđcungPH+sđcungQH=\dfrac{sđcungAKB}{2}\) (góc ở tâm đường tròn) (4)

Từ (1) (2) (3) (4) \(\Rightarrow\widehat{MOA}=\widehat{FOE}\)

 

 

1
15 tháng 12 2022

Mình không thấy câu nào cả thì giúp kiểu gì lỗi ảnh hay sao ý 

15 tháng 12 2022

10 tháng 1 2024

\(x^2+3x+2+2\left(2-x\right)\sqrt{x-1}=0\left(x\ge1\right)\)

\(\Leftrightarrow x^2-x-2x+2-2\left(x-2\right)\sqrt{x-1}=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)-2\left(x-2\right)\sqrt{x-1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)-2\left(x-2\right)\sqrt{x-1}=0\)

\(\Leftrightarrow\left(x-2\right)\sqrt{x-1}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x-1}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x-1=0\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(tm\right)\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=5\end{matrix}\right.\left(tm\right)\)

Vậy: \(x\in\left\{1;2;5\right\}\)

15 tháng 10 2023

b) \(\sqrt{x^2}=\left|-8\right|\)

\(\Rightarrow\left|x\right|=8\)

\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

d) \(\sqrt{9x^2}=\left|-12\right|\)

\(\Rightarrow\sqrt{\left(3x\right)^2}=12\)

\(\Rightarrow\left|3x\right|=12\)

\(\Rightarrow\left[{}\begin{matrix}3x=12\\3x=-12\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{12}{3}\\x=-\dfrac{12}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

1
17 tháng 11 2023

ĐKXĐ: \(\left\{{}\begin{matrix}2x-3>=0\\x+1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\x>=-1\end{matrix}\right.\)

=>\(x>=\dfrac{3}{2}\)

\(\sqrt{2x-3}-\sqrt{x+1}=x-4\)

=>\(\dfrac{2x-3-x-1}{\sqrt{2x-3}+\sqrt{x+1}}-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{2x-3}+\sqrt{x+1}}-1\right)=0\)

=>x-4=0

=>x=4(nhận)

17 tháng 7 2023

!?!?!?!?!?!?!?!

NV
20 tháng 1 2024

a. Câu này đơn giản em tự giải

b.

Xét hai tam giác OIM và OHN có:

\(\left\{{}\begin{matrix}\widehat{OIM}=\widehat{OHN}=90^0\\\widehat{MON}\text{ chung}\\\end{matrix}\right.\) \(\Rightarrow\Delta OIM\sim\Delta OHN\left(g.g\right)\)

\(\Rightarrow\dfrac{OI}{OH}=\dfrac{OM}{ON}\Rightarrow OI.ON=OH.OM\)

Cũng từ 2 tam giác đồng dạng ta suy ra \(\widehat{OMI}=\widehat{ONH}\)

Tứ giác OAMI nội tiếp (I và A cùng nhìn OM dưới 1 góc vuông)

\(\Rightarrow\widehat{OAI}=\widehat{OMI}\)

\(\Rightarrow\widehat{OAI}=\widehat{ONH}\) hay \(\widehat{OAI}=\widehat{ONA}\)

c.

Xét hai tam giác OAI và ONA có:

\(\left\{{}\begin{matrix}\widehat{OAI}=\widehat{ONA}\left(cmt\right)\\\widehat{AON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAI\sim\Delta ONA\left(g.g\right)\)

\(\Rightarrow\dfrac{OA}{ON}=\dfrac{OI}{OA}\Rightarrow OI.ON=OA^2=OC^2\) (do \(OA=OC=R\))

\(\Rightarrow\dfrac{OC}{ON}=\dfrac{OI}{OC}\)

Xét hai tam giác OCN và OIC có:

\(\left\{{}\begin{matrix}\dfrac{OC}{ON}=\dfrac{OI}{OC}\\\widehat{CON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OCN\sim\Delta OIC\left(g.g\right)\)

\(\Rightarrow\widehat{OCN}=\widehat{OIC}=90^0\) hay tam giác ACN vuông tại C

\(\widehat{ABC}\) là góc nt chắn nửa đường tròn \(\Rightarrow BC\perp AB\)

Áp dụng hệ thức lượng trong tam giác vuông ACN với đường cao BC:

\(BC^2=BN.BA=BN.2BH=2BN.BH\) (1)

O là trung điểm AC, H là trung điểm AB \(\Rightarrow OH\) là đường trung bình tam giác ABC

\(\Rightarrow OH=\dfrac{1}{2}BC\)

Xét hai tam giác OHN và EBC có:

\(\left\{{}\begin{matrix}\widehat{OHN}=\widehat{EBC}=90^0\\\widehat{ONH}=\widehat{ECB}\left(\text{cùng phụ }\widehat{IEB}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta OHN\sim\Delta EBC\left(g.g\right)\)

\(\Rightarrow\dfrac{OH}{EB}=\dfrac{HN}{BC}\Rightarrow HN.EB=OH.BC=\dfrac{1}{2}BC^2\)

\(\Rightarrow BC^2=2HN.EB\) (2)

(1);(2) \(\Rightarrow BN.BH=HN.BE\)

\(\Rightarrow BN.BH=\left(BN+BH\right).BE\)

\(\Rightarrow\dfrac{1}{BE}=\dfrac{BN+BH}{BN.BH}=\dfrac{1}{BH}+\dfrac{1}{BN}\) (đpcm)

NV
20 tháng 1 2024

loading...