\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

áp dụng bđt dang Engel

P=1/[x(x+y) ]+1/[y(x+y) ]

=1/(x+y). (1/x+1/y)

=1/(x+y). [(x+y) /xy]=1/(xy)

x+y≤1,x, y>0=>x.y≤1/4

p≥1/(1/4)=4

đẳng thức khi x=y=1/2

cảm ơn nhìu nhahihi....

\(VT=\dfrac{3}{xy+yz+xz}+\dfrac{2}{x^2+y^2+z^2}\)

\(=\dfrac{8}{4\left(xy+yz+xz\right)}+\dfrac{4}{4\left(xy+yz+xz\right)}+\dfrac{4}{2\left(x^2+y^2+z^2\right)}\)

\(\ge\dfrac{8}{4\cdot\dfrac{\left(x+y+z\right)^2}{3}}+\dfrac{\left(2+2\right)^2}{2\left(x+y+z\right)^2}\)

\(=\dfrac{8}{4\cdot\dfrac{1^2}{3}}+\dfrac{\left(2+2\right)^2}{2\cdot1^2}=14\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

15 tháng 10 2017

ÁP dụng AM-GM:

\(\sum\dfrac{a^2}{\sqrt{1-a^2}}=\sum\dfrac{a^3}{\sqrt{\left(1-a^2\right).a^2}}\ge\sum\dfrac{a^3}{\dfrac{1}{2}\left(1-a^2+a^2\right)}=2\sum a^3=2\left(đpcm\right)\)

Dấu = không xảy ra

29 tháng 12 2017

Dự đoán điểm rơi: x=3 ; y =4;z =2

ÁP dụng AM-Gm ta có:

\(\dfrac{8}{xyz}+\dfrac{x}{9}+\dfrac{y}{12}+\dfrac{z}{6}\ge4\sqrt[4]{\dfrac{8}{9.12.6}}=\dfrac{4}{3}\)

\(\dfrac{2}{xy}+\dfrac{x}{18}+\dfrac{y}{24}\ge3\sqrt[3]{\dfrac{2}{18.24}}=\dfrac{1}{2}\)

\(\dfrac{2}{yz}+\dfrac{y}{16}+\dfrac{z}{8}\ge3\sqrt[3]{\dfrac{2}{16.8}}=\dfrac{3}{4}\)

\(\dfrac{2}{xz}+\dfrac{z}{6}+\dfrac{x}{9}\ge3\sqrt[3]{\dfrac{2}{6.9}}=1\)

\(\dfrac{13}{18}x+\dfrac{13}{24}y\ge2\sqrt{\dfrac{169}{18.24}xy}\ge\dfrac{13}{3}\)

\(\dfrac{13}{24}z+\dfrac{13}{48}y\ge2\sqrt{\dfrac{169}{24.48}.yz}\ge\dfrac{13}{6}\)

Cộng tất cả theo vế ,ta thu được Đpcm.

23 tháng 7 2018

Câu hỏi của Anh Tú Dương - Toán lớp 10 | Học trực tuyến

AH
Akai Haruma
Giáo viên
24 tháng 5 2018

Lời giải:

Ta có: \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Mà theo BĐT Cauchy-Schwarz: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\)

Do đó: \(3\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3\)

-------

Ta có: \(\text{VT}=x-\frac{xz}{x^2+z}+y-\frac{xy}{y^2+x}+z-\frac{yz}{z^2+y}\)

\(=(x+y+z)-\left(\frac{xy}{y^2+x}+\frac{yz}{z^2+y}+\frac{xz}{x^2+z}\right)\)

\(\geq x+y+z-\frac{1}{2}\left(\frac{xy}{\sqrt{xy^2}}+\frac{yz}{\sqrt{z^2y}}+\frac{xz}{\sqrt{x^2z}}\right)\) (AM-GM)

\(=x+y+z-\frac{1}{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})\)

Tiếp tục AM-GM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \frac{x+1}{2}+\frac{y+1}{2}+\frac{z+1}{2}=\frac{x+y+z+3}{2}\)

Suy ra:

\(\text{VT}\geq x+y+z-\frac{1}{2}.\frac{x+y+z+3}{2}=\frac{3}{4}(x+y+z)-\frac{3}{4}\)

\(\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

11 tháng 7 2017

@Ace Legona: sir tra hộ e câu này đúng hay sai đề vs ,nhẩm mãi không ra điểm rơi

12 tháng 7 2017

thua :v