Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: \(15phút=\dfrac{1}{4}\left(h\right)\)
Gọi độ dài quãng đường AB là x (km, x>0)
Thời gian xe máy đi từ A đến B là : \(\dfrac{x}{45}\left(h\right)\)
Thời gian xe máy đi về là : \(\dfrac{x}{40}\left(h\right)\)
Vì thời gian về nhiều hơn thời gian đi là 15 phút, ta có phương trình :
\(\dfrac{x}{40}-\dfrac{x}{45}=\dfrac{1}{4}\)
\(<=> 9x -8x = 90\)
\(< =>x=90\left(tm\right)\)
=> Thời gian đi là : \(\dfrac{90}{45}=2\left(h\right)\)
=> Thời gian về là : \(2+0,25=2,25\left(h\right)\)
\(Vậy...\)
Bài 3 :
\(2h15ph=2,25\left(h\right)\)
\(2h30ph = 2,5 (h)\)
Gọi vận tốc thực của ca nô là : x ( km/h , x>2)
=> Độ dài quãng đường AB khi ca nô xuôi dòng là : \((x+2).2,25 (km)\)
=> Độ dài quãng đường AB khi ca nô ngược dòng là : \((x-2).2,5 (km)\)
Vì độ dài quãng đường AB khi ca nô đi xuôi và ngược dòng là như nhau, ta có phương trình :
\((x+2).2,25= (x-2).2,5\)
\(<=> 2,25x + 4,5 = 2,5x - 5 <=> 0,25x = 9,5 <=> x = 38 (km/h) ( nhận)\)
Khoảng cách từ A đến B là : \((38+2),2,25= 90 (Km) \)
\(Vậy...\)
gọi quãng đường AB là x (x>0)km
thời gian đi hết quãng đường AB là \(\dfrac{x}{30} h\)
quãng đường người đó đi lúc về dài 15+x km
thời gian về trên quãng đường đó \(\dfrac{15+x}{40}h\)
vì thời gian về ít hơn tg đi là 20p=\(\dfrac{1}{3}\)h nên ta có
\(\dfrac{x}{30}-\dfrac{15+x}{40}=\dfrac{1}{3}\)
giải pt x=85
vậy quãng đường AB dài 85 km
Gọi x (km) là quãng đường người đó đi về ( x>0)
Thời gian người đó đi từ A đến B : x : 30 = \(\dfrac{x}{30}\) (km/h)
Thời gian người đó đi về bằng con đường khác: x : 40 = \(\dfrac{x}{40}\) (km/h)
Vì lúc về người đó đi con đường khác về nên ít hơn thời gian đi là
20 phút (= \(\dfrac{1}{3}giờ\)) nên ta có phương trình
\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{1}{3}\)
\(\dfrac{4x}{120}-\dfrac{3x}{120}=\dfrac{40}{120}\)
⇒ 4x -3x = 40
x= 40 ( km )
Quãng đường AB dài: 40 + 15 = 55 ( km )
Vậy quãng đường AB dài 55 km
Thời gian xe máy từ A đến B với vận tốc 35km/h là
x/35 (h)
Thời gian người đó đi với vận tốc là 40km/h là
x/40 (h)
Lúc về người đó đi với vận tốc là 40km/h nên thời gian về nhanh hơn thời gian đi là 30 phút = 1/2 giờ nên
x/35 - x/40 = 1/2
=) 8x / 280 - 7x/280 = 140/280
=) x = 140
vậy AB = 140 km
Gọi x (km) là quãng đường AB :
ĐK : x > 0
Thời gian đi : \(\dfrac{x}{30}\left(h\right)\)
Thời gian về : \(\dfrac{x+15}{40}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi 20 phút nên ta có pt :
\(\dfrac{x}{30}-\dfrac{x+15}{40}=\dfrac{1}{3}\)
\(\Leftrightarrow4x-3\left(x+15\right)=40\)
\(\Leftrightarrow4x-3x-45=40\)
\(\Leftrightarrow x=85\left(N\right)\)
Vậy : ...
Gọi độ dài quãng đường AB là x
Theo đề, ta có: \(\dfrac{x}{50}-\dfrac{x}{60}=\dfrac{1}{2}\)
hay x=150
Gọi độ dài quãng đường từ tỉnh A đến tỉnh B là x (km) với x>0
Thời gian đi từ A đến B là: \(\dfrac{x}{40}\) giờ
Thời gian đi từ B về A là: \(\dfrac{x}{50}\) giờ
Do thời gian về ít hơn thời gian đi là 45 phút =3/4 giờ nên ta có pt:
\(\dfrac{x}{40}-\dfrac{x}{50}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x}{200}=\dfrac{3}{4}\)
\(\Rightarrow x=150\left(km\right)\)
Gọi thời gian người đi xe máy đi từ A đến B là x
Ta có phương trình : \(40x=30\left(x+1\right)\)
\(\Leftrightarrow40x=30x+30\Leftrightarrow40x-30x=30\)
\(\Leftrightarrow10x=30\Leftrightarrow x=30\div10=3\left(h\right)\)
=> Độ dài quãng đường AB là : \(40x=40.3=120\left(km\right)\)