Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài thửa ruộng là x(m)
Gọi chiều rộng thửa rộng là y(m)
Theo bài ra ta có hệ phương trình:
\(\hept{\begin{cases}2\left(x+y\right)=250\\2\left(\frac{x}{3}+2y\right)=250\end{cases}}\Rightarrow\hept{\begin{cases}x=75\\y=50\end{cases}}\)
Diện tích thửa ruộng là: \(75.50=3750\)
gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)
diện tích thửa ruộng là x.y (m2)
nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy
nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy
từ đó ta tìm được diện tích là 308m2
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có; a+b=125 và a/3+2b=125
=>a=75; b=50
Gọi cd là a(m;a>0)
Ta có cr là a-45(m)
Theo đề: \(\dfrac{a}{2}+3\left(a-45\right)=a+a-45\Leftrightarrow a=60\)
Vậy diện tích là \(60\cdot\left(60-45\right)=900\left(m^2\right)\)
Giải theo tiểu học vì bài này là chương trình lớp 5.
Giảm dài 2 lần mà tăng rộng 3 lần mà chu vi không đổi có nghĩa là phần tăng và giảm là bằng nhau.
giảm dài 2 lần tức là mất đi 1/2 chiều dài. Rộng tăng 3 lần có nghĩa là chiều rộng thêm 2 lần của nó nửa. Vậy 1/2 chiều dài bằng 2 lần chiều rộng hay chiều dài bằng 4 lần chiều rộng.
Giải theo dạng tìm hai số khi biết hiệu và tỷ của nó.
Chiều rộng là: 45:(4-1)x 1= 15m và chiều dài là 15+45=60m
Diện tích: 60x15= 900m2
gọi chiều dài thửa ruộng là x (m) ( x > 0 )
chiều rộng....................y (m) (y>0)
theo bài ra ta có hệ phương trình : \(\hept{\begin{cases}2x+2y=250\\\left(\frac{x}{3}+2y\right).2=250\end{cases}}\)
=> x = 75 , y = 50
Gọi chiều dài là a;chiều rộng là b (\(a,b\in N\)*; a<b)
Nửa chu vi thửa ruộng là:
250:2=125m
\(\Rightarrow a+b=125\left(1\right)\)
Nếu chiều dài giảm 3 lần và chiều rộng tăng 2 lần thì chu vi của thửa ruộng vẫn không đổi
\(\Rightarrow\left[\left(a-3\right)+\left(b+2\right)\right]\times2=\left(a+b\right)\times2\left(2\right)\)
Từ (1) và (2) ta có hệ... nhưng vô nghiệm ko bít tui sai hay đề sai :D
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của thửa ruộng(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chu vi của thửa ruộng là 190m nên ta có phương trình:
\(2\left(a+b\right)=190\)
\(\Leftrightarrow a+b=95\)(1)
Vì 2 lần chiều dài kém 3 lần chiều rộng của thửa ruộng là 10m nên ta có phương trình:
\(2a+10=3b\)
\(\Leftrightarrow2a-3b=-10\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=95\\2a-3b=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+2b=190\\2a-3b=-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5b=200\\a+b=95\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=40\left(nhận\right)\\a=95-40=55\left(nhận\right)\end{matrix}\right.\)
Diện tích thửa ruộng là:
\(S=ab=55\cdot40=2200m^2\)