K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: \(x^3+x-2=0\)

=>\(x^3-x^2+x^2-x+2x-2=0\)

=>\(\left(x-1\right)\left(x^2+x+2\right)=0\)

mà \(x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}>0\forall x\)

nên x-1=0

=>x=1

Câu 3: \(x^4-10x^2-11x-10\)

\(=x^4-x^3-10x^2+x^3-x^2-10x+x^2-x-10\)

\(=x^2\left(x^2-x-10\right)+x\left(x^2-x-10\right)+\left(x^2-x-10\right)\)

\(=\left(x^2-x-10\right)\left(x^2+x+1\right)\)

Câu 5: \(x^3-x^2-14x+24\)

\(=x^3+4x^2-5x^2-20x+6x+24\)

\(=x^2\left(x+4\right)-5x\left(x+4\right)+6\left(x+4\right)\)

\(=\left(x+4\right)\left(x^2-5x+6\right)=\left(x+4\right)\left(x-2\right)\left(x-3\right)\)

Câu 6: \(x^3-5x^2+8x-4\)

\(=x^3-x^2-4x^2+4x+4x-4\)

\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)

Câu 7:

\(\left(a-x\right)y^3-\left(a-y\right)x^3+\left(x-y\right)a^3\)

\(=a\cdot y^3-xy^3-a\cdot x^3+y\cdot x^3+\left(x-y\right)\cdot a^3\)

\(=a\left(y^3-x^3\right)-xy\left(y^2-x^2\right)+\left(x-y\right)a^3\)

\(=a\left(y-x\right)\left(y^2+xy+x^2\right)-xy\left(y-x\right)\left(y+x\right)-\left(y-x\right)a^3\)

\(=\left(y-x\right)\left[a\left(x^2+xy+y^2\right)-xy\left(x+y\right)-a^3\right]\)

 

Bài 2: 

Ta có: \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)

hay \(n\in\left\{0;-1;1\right\}\)

1 tháng 11 2021

Câu 20:

Ta có:  \(\widehat{A}-\widehat{B}=40^0\Rightarrow\widehat{B}=\widehat{A}-40^0\)

\(\widehat{A}=2\widehat{C}\Rightarrow\widehat{C}=\frac{\widehat{A}}{2}\)

Vì AB//CD (gt) \(\Rightarrow\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)\(\Rightarrow\widehat{D}=180^0-\widehat{A}\)

Tứ giác ABCD \(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\Rightarrow\widehat{A}+\left(\widehat{A}-40^0\right)+\frac{\widehat{A}}{2}+\left(180^0-\widehat{A}\right)=360^0\)

Và đến đây bạn dễ dàng tìm được góc A và từ đó suy ra được góc D.

1 tháng 11 2021

Câu 29: Ta có: 

\(\hept{\begin{cases}xy+x+y=3\\yz+y+z=8\\xz+x+z=15\end{cases}}\Leftrightarrow\hept{\begin{cases}xy+x+y+1=4\\yz+y+z+1=9\\xz+x+z+1=16\end{cases}\Leftrightarrow}\hept{\begin{cases}x\left(y+1\right)+\left(y+1\right)=4\\y\left(z+1\right)+\left(z+1\right)=9\\x\left(z+1\right)+\left(z+1\right)=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=9\\\left(z+1\right)\left(x+1\right)=16\end{cases}}\)

Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\\z+1=c\end{cases}}\)với a,b,c > 1, khi đó ta có 

\(\hept{\begin{cases}ab=4\\bc=9\\ca=16\end{cases}}\Leftrightarrow\hept{\begin{cases}abbc=4.9\\c=\frac{9}{b}\\ca=16\end{cases}}\Leftrightarrow\hept{\begin{cases}16b^2=36\\c=\frac{9}{b}\\a=\frac{16}{c}\end{cases}}\Leftrightarrow\hept{\begin{cases}b^2=\frac{36}{16}=\frac{9}{4}\\c=\frac{9}{b}\\a=\frac{16}{c}\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{3}{2}\\c=\frac{9}{\frac{3}{2}}=6\\a=\frac{16}{6}=\frac{8}{3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=a-1=\frac{8}{3}-1=\frac{5}{3}\\y=b-1=\frac{3}{2}-1=\frac{1}{2}\\z=c-1=6-1=5\end{cases}}\)

Vậy \(P=x+y+z=\frac{5}{3}+\frac{1}{2}+5=\frac{10+3+30}{6}=\frac{43}{6}\)

25 tháng 10 2021

Bài 4: 

a: Ta có: \(\widehat{OAB}=\widehat{ODC}\)

\(\widehat{OBA}=\widehat{OCD}\)

mà \(\widehat{ODC}=\widehat{OCD}\)

nên \(\widehat{OAB}=\widehat{OBA}\)

hay ΔOAB cân tại O

Câu 106: 

a: Xét ΔABC có 

P là trung điểm của AB

N là trung điểm của AC

Do đó: PN là đường trung bình của ΔABC

Suy ra: PN//BC

hay PN//HM; QN//HM

Xét tứ giác QNMH có QN//HM

nên QNMH là hình thang

mà \(\widehat{QHM}=90^0\)

nên QNMH là hình thang vuông

b: Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến ứng với cạnh huyền AC

nên \(HN=\dfrac{AC}{2}\left(1\right)\)

Xét ΔABC có

M là trung điểm của BC

P là trung điểm của AB

Do đó: MP là đường trung bình của ΔABC

Suy ra: MP//AC và \(MP=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có PN//HM

nên MNPH là hình thang

mà MP=HN

nên MNPH là hình thang cân

8 tháng 9 2021

bạn đinhr thực sự hâm mộ bạn luôn á cam rơn nhìu nha mong bn sẽ luôn giúp đỡ mik :)

a: Xét ΔABC có BM/BC=BD/BA

nên MD//AC

=>MM' vuông góc AB

=>M đối xứngM' qua AB

b: Xét tứ giác AMBM' có

D là trung điểm chung của AB và MM'

MA=MB

Do đó: AMBM' là hình thoi

a: ĐKXĐ: x<>2; x<>-3

b: \(P+\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\dfrac{x-4}{x-2}\)

c: Để P=-3/4 thì x-4/x-2=-3/4

=>4x-8=-3x+6

=>7x=14

=>x=2(loại)

e: x^2-9=0

=>x=3 (nhận) hoặc x=-3(loại)

Khi x=3 thì \(P=\dfrac{3-4}{3-2}=-1\)

21 tháng 3 2022

Câu 1: Chọn C.

Câu 2: Chọn D.

Câu 3: Chọn A.

Câu 4: Chọn A.

Câu 5: Chọn D (x=13/2).

Câu 6: Chọn A.

Câu 7: Chọn B.

Câu 8: Chọn D.

Câu 9: Chọn a.

Câu 10: Chọn d.

21 tháng 3 2022

Còn câu 9 10 bạn bt lm k ạ

26 tháng 9 2018

dễ mak

26 tháng 9 2018

Bài 1 :

1) a2 - 4 + y ( a - 2 )

= ( a + 2 ) ( a - 2 ) + y ( a - 2 )

= ( a - 2 ) ( a + 2 + y )

2) ( x - 2 )2 - 9y2

= ( x - 2 - 3y ) ( x - 2 + 3y )

Bài 2 :

1) 3 ( x + 4 ) - 2x = 5

=> 3x + 12 - 2x = 5

=> x + 12 = 5

=> x = 5 - 12 = - 7

Vậy x = - 7

2) x ( x - 2 ) - x2 - 6 = 0

=> x2 - 2x - x2 - 6 = 0

=> - 2x - 6 = 0

=> 2x = - 6

=> x = \(-\frac{6}{2}=3\)

Vậy x = 3

3 ) x2 - 3x = 0

=> x ( x - 3 ) = 0

=> \(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy \(x\in\left\{0;3\right\}\)

4) 5 - 3 ( x - 6 ) = 4

=> 5 - 3x + 18 = 4

=> 3x = 5 + 18 - 4

=> 3x = 19

=> x = \(\frac{19}{3}\)

Vậy \(x=\frac{19}{3}\)