K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
10 tháng 4 2022

a) \(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)là số nguyên tương đương với \(\frac{2}{n-1}\)là số nguyên

mà \(n\)là số nguyên nên \(n-1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow n\in\left\{-1,0,2,3\right\}\).

b) \(\frac{3n+1}{n+1}=\frac{3n+3-2}{n+1}=3-\frac{2}{n+1}\)là số nguyên tương đương với \(\frac{2}{n+1}\)là số nguyên

mà \(n\)là số nguyên nên \(n+1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow n\in\left\{-3,-2,0,1\right\}\).

12 tháng 1

a) Phân số \(\dfrac{n+4}{1}\) là số nguyên với mọi x nguyên 

b) \(\dfrac{n-2}{4}\) là một số nguyên khi:

\(n-2\) ⋮ 4

⇒ n - 2 ∈ B(4) 

⇒ n ∈ B(4) + 2

c) \(\dfrac{6}{n-1}\) là một số nguyên khi:

6 ⋮ n - 1

\(\Rightarrow n-1\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

\(\Rightarrow n\in\left\{2;0;3;-1;4;-2;7;-5\right\}\) 

d) \(\dfrac{n}{n-2}=\dfrac{n-2+2}{n-2}=1+\dfrac{2}{n-2}\)

Để bt nguyên thì \(\dfrac{2}{n-2}\) phải nguyên:

\(\Rightarrow\text{2}\) ⋮ n - 2

\(\Rightarrow n-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

\(\Rightarrow n\in\left\{3;1;4;0\right\}\)

A nguyên thì 3n+4 chia hết cho 2n+1

=>6n+8 chia hết cho 2n+1

=>6n+3+5 chia hết cho 2n+1

=>\(2n+1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{0;-1;2;-3\right\}\)

a: A nguyên

=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

=>n thuộc {2/3;0;1;-1/3;4/3;-2/3;5/3;-1;7/3;-5/3;13/3;-11/3}

b: B nguyên

=>2n+3 chia hết cho 7

=>2n+3=7k(k\(\in Z\))

=>\(n=\dfrac{7k-3}{2}\left(k\in Z\right)\)

c: C nguyên

=>2n+5 chia hết cho n-3

=>2n-6+11 chia hết cho n-3

=>n-3 thuộc {1;-1;11;-11}

=>n thuộc {4;2;12;-8}

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

6 tháng 3 2018

giúp mình nha !

4 tháng 3 2022

giúp mik nhanh vs các bn ơiiiiii

:(

4 tháng 3 2022

-bạn tự lập bảng nhé 

a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

n-31-111-11
n4214-8

 

c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản