">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

a) \(\Delta ABC\) vuông tại A có đường cao AH nên \(AH^2=BH.CH\left(htl\right)\)

\(\Rightarrow CH=\frac{AH^2}{BH}=\frac{4,8^2}{3,6}=6,4\left(cm\right)\)

\(\Rightarrow BC=BH+CH=3,6+6,4=10\left(cm\right)\)

\(\Delta ACH\)vuông tại H nên \(\tan C=\frac{AH}{CH}=\frac{4,8}{6,4}=\frac{3}{4}\Rightarrow\widehat{C}\approx36^052'\)

b) Xét \(\Delta ABC\)vuông tại A:

+) Tính góc B:

Ta có: \(\widehat{B}+\widehat{C}=90^0\Rightarrow\widehat{B}=90^0-\widehat{C}=90^0-30^0=60^0\)

+) Tính AB:

Ta có \(AB=AC.\tan C=12.\tan30^0=12.\frac{\sqrt{3}}{3}=4\sqrt{3}\left(cm\right)\)

+) Tính BC:

Ta có \(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(4\sqrt{3}\right)^2+12^2}=\sqrt{48+144}=\sqrt{192}=8\sqrt{3}\left(cm\right)\)

c) \(\Delta ABC\)vuông tại A có đường cao AH nên \(AB^2=BH.BC\left(htl\right)\)

Xét \(\Delta ACD\)có B và I lần lượt là trung điểm của CD, AD nên BI là đường trung bình của \(\Delta ACD\)

\(\Rightarrow BI//AC\)(1)

Mặt khác \(\Delta ABC\)vuông tại A nên \(AB\perp AC\)(2)

Từ (1) và (2) \(\Rightarrow IB\perp AB\Rightarrow BK\perp AB\Rightarrow\Delta ABK\)vuông tại B

Xét \(\Delta ABK\)vuông tại B có đường cao BH nên \(AB^2=AH.AK\left(htl\right)\)

Mà \(AB^2=BH.BC\left(cmt\right)\)

\(\Rightarrow AH.AK=BH.BC\left(đpcm\right)\)

d) Vì \(AB\perp BI\left(cmt\right)\Rightarrow\Delta ABI\)vuông tại B

\(\Delta ABI\)vuông tại B có đường cao BE (vì \(BE\perp AI\)tại E) có đường cao AH nên \(\frac{1}{BE^2}=\frac{1}{BI^2}+\frac{1}{AB^2}\left(htl\right)\)(*)

Vì BI là đường trung bình của \(\Delta ACD\)(cmt) nên \(BI=\frac{AC}{2}\Rightarrow BI^2=\frac{AC^2}{4}\Rightarrow\frac{1}{BI^2}=\frac{4}{AC^2}\)(3)

Mặt khác \(\Delta ABC\)vuông tại A nên \(\sin C=\frac{AB}{BC}\Rightarrow\frac{AB}{BC}=\sin30^0=\frac{1}{2}\Rightarrow AB=\frac{BC}{2}\Rightarrow\frac{1}{AB^2}=\frac{4}{BC^2}\)(4)

Thay (3) và (4) vào (*), ta có:

\(\frac{1}{BE^2}=\frac{4}{AC^2}+\frac{4}{BC^2}\)(đpcm)

DD
7 tháng 11 2021

Bài 1: 

Kẻ \(OM\perp AB\)\(OM\)cắt \(CD\)tại \(N\).

Khi đó \(MN=8cm\).

TH1: \(AB,CD\)nằm cùng phía đối với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)

\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2) 

Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).

TH2: \(AB,CD\)nằm khác phía với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)

\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)

Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).

DD
7 tháng 11 2021

Bài 3: 

Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).

\(MA+MB=MA'+MB\ge A'B\)

Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).

Suy ra \(M\left(\frac{5}{3},0\right)\).

2 tháng 9 2016

 Bảo Duy Cute sướng wá ha. có ngừi chúc n.n lun

2 tháng 9 2016

uk...thanks e 

23 tháng 9 2021

đi ngủ đê ae 

12 tháng 10 2016

đẹp quá nhở

14 tháng 10 2016

xik lắm eyeu

20 tháng 7 2017

Bài 1:

a)

\(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\) ĐKXĐ: x >1

\(=\left(\dfrac{2\sqrt{x}.\sqrt{x}}{2.2\sqrt{x}}-\dfrac{2}{2.2\sqrt{x}}\right)\left(\dfrac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)^2}-\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{2x-2}{4\sqrt{x}}\right)\left(\dfrac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{\left(x-1\right)^2}\right)\\ =\dfrac{\left(x-1\right).\left(-4x\right)}{2\sqrt{x}.\left(x-1\right)^2}=\dfrac{-2\sqrt{x}}{x-1}\)

b)

Với x >1, ta có:

A > -6 \(\Leftrightarrow\dfrac{-2\sqrt{x}}{x-1}>-6\Rightarrow-2\sqrt{x}>-6\left(x-1\right)\)

\(\Leftrightarrow-2\sqrt{x}+6x-6>0\\ \Leftrightarrow x-\dfrac{2}{6}\sqrt{x}-1>0\\ \Leftrightarrow x-2.\dfrac{1}{6}\sqrt{x}+\left(\dfrac{1}{6}\right)^2>1+\dfrac{1}{36}\\ \Leftrightarrow\left(\sqrt{x}-\dfrac{1}{6}\right)^2>\dfrac{37}{36}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6}-\sqrt{x}>\dfrac{\sqrt{37}}{6}\\\sqrt{x}-\dfrac{1}{6}>\dfrac{\sqrt{37}}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-\sqrt{x}>\dfrac{\sqrt{37}-1}{6}\\\sqrt{x}>\dfrac{\sqrt{37}+1}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x>\dfrac{19-\sqrt{37}}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{\sqrt{37}-19}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\)

Vậy không có x để A >-6

20 tháng 7 2017

làm 1 bài đủ nản @_ @

5 tháng 9 2016

Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn

5 tháng 9 2016

Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy 

2 tháng 9 2016

cái này đẹp hơn