K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Chọn mp(SAC) có chứa SC

\(I\in SA\subset\left(SAC\right);I\in\left(BIK\right)\)

Do đó: \(I\in\left(SAC\right)\cap\left(BIK\right)\)

Trong mp(ABCD), gọi H là giao điểm của AC và BK

=>\(H\in\left(SAC\right)\cap\left(BIK\right)\)

=>\(\left(SAC\right)\cap\left(BIK\right)=HI\)

Gọi M là giao điểm của HI với SC

=>M là giao điểm của SC với mp(BIK)

20 tháng 9 2021

3.

\(y=\dfrac{1-sin^24x}{5}=\dfrac{cos^24x}{5}\)

\(cos4x\in\left[-1;1\right]\Rightarrow cos^24x\in\left[0;1\right]\Rightarrow y\in\left[0;\dfrac{1}{5}\right]\Rightarrow\left\{{}\begin{matrix}y_{min}=0\\y_{max}=\dfrac{1}{5}\end{matrix}\right.\)

20 tháng 9 2021

6.

\(y=sinx+cosx+2=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+2\)

\(sin\left(x+\dfrac{\pi}{4}\right)\in\left[-1;1\right]\Rightarrow y=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+2\in\left[-\sqrt{2}+2;\sqrt{2}+2\right]\)

\(\Rightarrow y_{min}=-\sqrt{2}+2\)

\(y_{max}=\sqrt{2}+2\)

12 tháng 7 2021

Câu nào bạn, nếu mà cả thì đăng tách ra đi :)

12 tháng 7 2021

Ok bạn =))

NV
12 tháng 7 2021

1.

\(sin^2x-4sinx.cosx+3cos^2x=0\)

\(\Rightarrow\dfrac{sin^2x}{cos^2x}-\dfrac{4sinx}{cosx}+\dfrac{3cos^2x}{cos^2x}=0\)

\(\Rightarrow tan^2x-4tanx+3=0\)

2.

\(\Leftrightarrow\dfrac{1}{2}cos2x+\dfrac{\sqrt{3}}{2}sin2x=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

3.

\(\Leftrightarrow2^2+m^2\ge1\)

\(\Leftrightarrow m^2\ge-3\) (luôn đúng)

Pt có nghiệm với mọi m (đề bài sai)

NV
12 tháng 7 2021

4.

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=1\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=1\)

\(\Leftrightarrow x-\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\)

6.

ĐKXĐ: \(cosx\ne0\)

Nhân 2 vế với \(cos^2x\)

\(sin^2x-4cosx+5cos^2x=0\)

\(\Leftrightarrow1-cos^2x-4cosx+5cos^2x=0\)

\(\Leftrightarrow\left(2cosx-1\right)^2=0\)

\(\Leftrightarrow cosx=\dfrac{1}{2}\Rightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)

12 tháng 7 2021

6.

\(cos^2x+\sqrt{3}sinx.cosx-1=0\)

\(\Leftrightarrow-sin^2x+\sqrt{3}sinx.cosx=0\)

\(\Leftrightarrow sinx\left(sinx-\sqrt{3}cosx\right)=0\)

\(\Leftrightarrow sinx\left(\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx\right)=0\)

\(\Leftrightarrow sinx.sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sin\left(x-\dfrac{\pi}{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

12 tháng 7 2021

7.

\(\sqrt{3}sinx-cosx=2\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=1\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=1\)

\(\Leftrightarrow x-\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\)

NV
12 tháng 7 2021

12.

\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\le\sqrt[]{2}\)

\(\Rightarrow M=\sqrt{2}\)

13.

Pt có nghiệm khi:

\(5^2+m^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow2m\le24\)

\(\Rightarrow m\le12\)

NV
12 tháng 7 2021

14.

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=k2\pi\)

15.

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)

Đáp án A

16.

\(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

\(\left[{}\begin{matrix}2\pi\le\dfrac{\pi}{3}+k2\pi\le2018\pi\\2\pi\le\pi+k2\pi\le2018\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le k\le1008\\1\le k\le1008\end{matrix}\right.\)

Có \(1008+1008=2016\) nghiệm

11 tháng 3 2022

undefined

undefined

NV
17 tháng 9 2021

1.

\(D=R\backslash\left\{\dfrac{\pi}{6}+\dfrac{k\pi}{3}\right\}\) là miền đối xứng

\(f\left(-x\right)=\left(-x^3-x\right)tan\left(-3x\right)=\left(x^3+x\right)tan3x=f\left(x\right)\)

Hàm chẵn

2.

\(D=R\)

\(f\left(-x\right)=\left(-2x+1\right)sin\left(-5x\right)=\left(2x-1\right)sin5x\ne\pm f\left(x\right)\)

Hàm không chẵn không lẻ 

3.

\(D=R\backslash\left\{\dfrac{\pi}{6}+\dfrac{k\pi}{3}\right\}\) là miền đối xứng

\(f\left(-x\right)=tan\left(-3x\right).sin\left(-5x\right)=-tan3x.\left(-sin5x\right)=tan3x.sin5x=f\left(x\right)\)

Hàm chẵn

4.

\(D=R\)

\(f\left(-x\right)=sin^2\left(-2x\right)+cos\left(-10x\right)=sin^22x+cos10x=f\left(x\right)\)

Hàm chẵn

5.

\(D=R\backslash\left\{k\pi\right\}\) là miền đối xứng

\(f\left(-x\right)=\dfrac{-x}{sin\left(-x\right)}=\dfrac{-x}{-sinx}=\dfrac{x}{sinx}=f\left(x\right)\)

Hàm chẵn