K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

chắc chắn của chắc chắn là không

3 tháng 8 2016

A=5+52+...+599+5100

=(5+52)+...+(599+5100)

=5.(1+5)+...+599.(1+5)

=5.6+...+599.6

=6.(5+...+599) chia hết cho 6 (dpcm)

Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi

Chúc bạn học giỏi nha!!

1 tháng 1 2021

\(A=5+5^2+5^3+...+5^{100}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{99}.6\)

\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)

\(B=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+...+2^{96}.31\)

\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)

\(C=3+3^2+3^3+...+3^{60}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)

\(=3.4+3^3.4+...+3^{59}.4\)

\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)

\(C=3+3^2+3^3+...+3^{60}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=3.13+...+3^{58}.13\)

\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)

3 tháng 1 2019

Giải giùm tớ (-209)-401+12

2 tháng 1 2019

bai mac re ma khong lam dc tao chiu bay can tao giang khong

4 tháng 1 2017

Ta có : S = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 599 + 5100 )

= 5 ( 1 + 5 ) + 53 ( 1 + 5 ) + ..... + 599 ( 1 + 5 )

= 5.6 + 53.6 + .... + 599.6

= 6 ( 5 + 53 + ... + 599 )

Vì 6 chia hết cho 6 nên 6 ( 5 + 53 + ... + 599 ) chia hết cho 6 

Hay S chia hết cho 6 ( đpcm )

4 tháng 1 2017

Ta có A=5+52+53+...+599+5100=(5+52)+(53+54)+...+(599+5100)

A=5.(1+5)+53.(1+5)+599.(1+5)

A=5.6+53.6+...+599.6

A=6.(5+53+...+599) sẽ chia hết cho 6

mik nha bài nay mik làm HSG lớp 6 quen rùi!!!!!

26 tháng 2 2017

a, S = 1 + 5 + 52 +...+ 5100

= (1 + 5) + (52 + 53) +...+ (599 + 5100)

= (1 + 5) + 52(1 + 5) +...+ 599(1 + 5) 

= 6 + 52.6 +...+ 599.6

= 6(1 + 52 +...+ 599)

Vì 6 chia hết cho 3 nên 6(1 + 52 +...+ 599) chia hết cho 3

Vậy S chia hết cho 3

b, S = 1 + 5 + 52 +...+ 5100

5S = 5 + 52 + 53 +...+ 5101

5S - S = (5 + 52 + 53 +...+ 5101) - (1 + 5 + 52 +...+ 5100)

4S = 5101 - 1

4S + 1 = 5101 - 1 + 1

4S + 1 = 5101 = 5n + 1

=> n + 1 = 101

=> n = 100

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
$A=2^1+2^2+2^3+2^4$

$2A=2^2+2^3+2^4+2^5$

$\Rightarrow 2A-A=2^5-2^1$

$\Rightarrow A=2^5-1=32-1=31$

----------------------------

$B=3^1+3^2+3^3+3^4$

$3B=3^2+3^3+3^4+3^5$

$\Rightarrow 3B-B = 3^5-3$

$\Rightarrow 2B = 3^5-3\Rightarrow B = \frac{3^5-3}{2}$

--------------------------

$C=5^1+5^2+5^3+5^4$

$5C=5^2+5^3+5^4+5^5$

$\Rightarrow 5C-C=5^5-5$

$\Rightarrow C=\frac{5^5-5}{4}$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 2: Sai đề bạn nhé. Bạn xem lại.

26 tháng 9 2015

a) 5+52+53+54+...+5100

= (5+52)+(53+54)+...+(599+5100)

= 30+52.(5+52)+...+598.(5+52)

= 30+52.30+...+598.30

= 30.(1+52+...+598)

Vì 30 chia hết cho 10

=> 30.(1+52+...+598) chia hết cho 10

=> 5+52+53+...+5100 chia hết cho 10

8 tháng 12 2016

s chia hết cho 25 vì trong thừa số của s có 25 đó là  5^2

s không chia hết cho 31 vì trong thừa số của s không có 31