\(\frac{3,5}{-1,5}=\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

\(\frac{3,5}{-1,5}=\frac{x}{7}\)

\(\Rightarrow x.\left(-1,5\right)=3,5.7\)

\(\Rightarrow x.\left(-1,5\right)=24,5\)

\(\Rightarrow x=24,5\div\left(-1,5\right)\)

\(\Rightarrow x=\frac{-49}{3}\)

20 tháng 11 2018

\(\frac{3,5}{-1,5}=\frac{x}{7}\)

=> 3,5 . 7 = x . ( -1,5 )

=> 24,5    = x . ( - 1,5 )

=> x = \(\frac{-49}{3}\)

21 tháng 11 2018

Ta có: \(\frac{6\frac{1}{4}}{x}=\frac{x}{1,96}\)

\(\left(=\right)\frac{\frac{25}{4}}{x}=\frac{x}{1,96}\)

\(\left(=\right)x^2=12,25\)

\(=>\orbr{\begin{cases}x=3,5\\x=-3,5\end{cases}}\)

học tốt

21 tháng 11 2018

Thanks!!!!!!!!!!!!

31 tháng 5 2020

*\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)

\(M=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)

\(M=6x^2+9xy-y^2-5x^2+2xy\)

\(M=\left(6-5\right)x^2+\left(9+2\right)xy-y^2\)

\(M=x^2+11xy-y^2\)

\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)

Ta có : \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\forall x\\\left(3y+4\right)^{2020}\ge0\forall y\end{cases}\Rightarrow}\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\forall x,y\)

Mà đề cho \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)

=> \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)

=> \(\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)

Thay x = 5/2 ; y = -4/3 vào M ta được :

\(M=\left(\frac{5}{2}\right)^2+11\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)

\(M=\frac{25}{4}+\frac{-110}{3}-\frac{16}{9}\)

\(M=\frac{-1159}{36}\)

Vậy giá trị của M = -1159/36 khi x = 5/2 ; y = -4/3

Không chắc nha 

Ta có:

\(\left(\frac{3}{5}-x\right).\left(\frac{2}{5}-x\right)>0\)

\(\Rightarrow\frac{3}{5}-x>0\)và \(\frac{2}{5}-x>0\)

\(\Rightarrow x>\frac{3}{5}\)và \(x>\frac{2}{5}\)

MÌNH NGHĨ VẬY, NHỚ KICK ĐÚNG CHO MÌNH NHA.......( ^ _ ^ )

20 tháng 12 2018

\(\left(\frac{3}{5}-x\right)\left(\frac{2}{5}-x\right)>0\)

\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}\frac{3}{5}-x>0\\\frac{2}{5}-x>0\end{cases}}\\\orbr{\begin{cases}\frac{3}{5}-x< 0\\\frac{3}{5}-x< 0\end{cases}}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}x< \frac{3}{5}\\x< \frac{2}{5}\end{cases}}\\\orbr{\begin{cases}x>\frac{3}{5}\\x>\frac{3}{5}\end{cases}}\end{cases}}\)

5 tháng 2 2020

a)

- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3

=> A lớn hơn hoặc = 2.

Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0

                                             => x + 3 = 0

                                                         x = -3

Vậy..........

b)

Ta có: B lớn hơn hoặc = / x - 1 /  + / x - 3 / = / x - 1 /  + / 3 - x /

Mà / x - 1 /  + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x /  = /2/ = 2

=> B lớn hơn hoặc = 2.

Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0.   (1)

Giải (1) được x = 2 TM.

Vậy min B = 2 <=> x=2.

16 tháng 12 2018

Cho x=2018\(\Rightarrow2f\left(2018\right)+f\left(\frac{1}{2018}\right)=2018\)                         (1)

Cho x=\(\frac{1}{2018}\)\(\Rightarrow2f\left(\frac{1}{2018}\right)+f\left(\frac{1}{\frac{1}{2018}}\right)=\frac{1}{2018}\Rightarrow2f\left(\frac{1}{2018}\right)+f\left(2018\right)=\frac{1}{2018}\)         (2)

Lấy (1) x 2 - (2)\(\Rightarrow4f\left(2018\right)+2f\left(\frac{1}{2018}\right)-2f\left(\frac{1}{2018}\right)-f\left(2018\right)=2018-\frac{1}{2018}\)

\(\Rightarrow3f\left(2018\right)=\frac{4072323}{2018}\Rightarrow f\left(2018\right)=\frac{4072323}{6054}\)

20 tháng 12 2018

Đù Nguyễn Hưng Phát giỏi hơn cả cô mình

13 tháng 11 2015

 x= -660/7;y=-80/7;z=-100/7

29 tháng 10 2019

Ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)

\(\Rightarrow\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}=\frac{x^2+3y^2-z^2}{4+27-25}=\frac{30}{6}=5\)

\(\Rightarrow\)x2=20

         y2=45

         z2=125

29 tháng 10 2019

Áp dụng .......................................

ta được: x/2=y/3=z/5=(x2+3y2-z2)/(22+3*32-52)=30/6=5

Vậy: x=10 

    y=15

    z=25

5 tháng 11 2019

Bài 1: gọi 3 số cần tìm là a;b;c

Theo đề bài a.b.c=5(a+b+c). Vế phải chia hết cho 5 nên a.b.c chia hết cho 5 => trong 3 số a;b;c có ít nhất 1 số chia hết cho 5

Giả sử c là số chia hết cho 5 và c là 1 số nguyên tố => c=5

=> a.b.5=5(a+b+5)=> a.b=a+b+5=> a.b-a=b+5 => a(b-1)=(b-1)+6 => a = 1+6/(b-1)

Vì a;b là các số nguyên => để a là số nguyên thì b-1 phải là ước của 6, do các số nguyên tố đều lớn hơn 1

=> b-1={1; 2;3;6}=> b={2;3;4;7} do b là số nguyên tố nên b=4 loại => b={2;3;7}

Thay vào biểu thức tính a => a={7; 4; 2} do a là số nguyên tố nên a=4 loại => b=3 loại

Vậy 3 số cần tìm là 2;5;7

Thử: 2.5.7=70; 5(2+5+7)=70

7 tháng 8 2015

bài 1

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=>\frac{a+b+c}{b+c+a}=1=>a=b=c\)

bài 2

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{a+b+c}\)

7 tháng 8 2015

bài 1:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> \(\frac{a}{b}=1\)  

  \(\frac{b}{c}=1\)  

  \(\frac{c}{a}=1\)

=> a=b   (1)

b=c    (2)

c=a     (3)

=> a=b=c