Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{-109}{-x}=\frac{109}{x}\)
=>x2=1092
=>x=(109;-109)
b) \(\frac{289}{x}=\frac{7x^2}{-119}\)
=>7x3=-34391
=>x3=-4913
=>x=-17
Ai k mk mk sẽ k lại
\(\frac{17^2}{x}=\frac{7x^2}{-119}\)
=\(17^2.\left(-119\right)=7x^2.x\)
=\(-34391=7x^3\)
=\(-4913=x^3\)
x=\(\sqrt[3]{-4913}=-17\)
1,x+9/x+5=2/7
=>(x+9).7=(x+5).2
=>7x+63=2x+10
=>7x-2x=10-63
=>5x=-53=>x=-53/5
7x=2y<=>x/2=y/7
Áp dụng...
=>x=2;y=7
Bài 2:
TH1: \(x\le-\frac{5}{2}\)
<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)
<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)
TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)
<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)
TH3: \(x>\frac{2}{5}\)
<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)
Vậy không có số x thỏa mãn đề bài
Bài 1:
Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 3:
Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)
Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3
+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)
+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)
Vậy ...........
17^2/x=7x^2/-119
suy ra : x.7x^2=17^2.(-119)
x^3.7=289.-119
x^3.7=-34391
x^3=-34391:7
x^3=-4913
x^3=-17^3
suy ra x=-17
vậy x=-17