Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)
2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.
\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.
$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.
$C$ hiển nhiên đúng, theo định nghĩa.
Do đó áp án đúng là C.
3)
a) \(-\sqrt{x}=(-7)^2=49\)
\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)
Do đó pt vô nghiệm.
b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)
e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)
g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)
\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)
\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)
h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)
f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)
\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}
Cau a la 1
Cau b la 1215
Cau c la 768
Cau d la \(\frac{4185}{13}\)
\(\frac{4^2.4^3}{2^{10}}=\frac{4^{2+3}}{\left(2^2\right)^5}=\frac{4^5}{4^5}=1\)
\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\frac{3^5}{0,2}=1215\)
\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^2.2^5.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^2.2^5.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}=\frac{3}{16}\)
\(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3.\left(2.3\right)^2+3^3}{-13}=\frac{2^3.3^3+3.2^2.3^2+3^3}{-13}=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=\left(-3\right)^3=-27\)
1.
ĐKXĐ: \(x\ge0\) cho tất cả các câu
a) x = 6 (thỏa mãn)
b) vô nghiệm vì VT≥0 mà VP < 0
c) x = 5 (thỏa mãn)
d) \(\sqrt{x}=\left|-31\right|=31\)
x = 961(thỏa mãn)
bài 2 tương tự
Bài 2:
a) \(x^2-23=0\)
\(\Rightarrow x^2=0+23\)
\(\Rightarrow x^2=23\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{23}\\x=-\sqrt{23}\end{matrix}\right.\)
Vậy \(x\in\left\{\sqrt{23};-\sqrt{23}\right\}.\)
b) \(7-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}=7-0\)
\(\Rightarrow\sqrt{x}=7\)
\(\Rightarrow\sqrt{x}=\left(\sqrt{7}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{49}\)
\(\Rightarrow x=49\)
Vậy \(x=49.\)
Chúc bạn học tốt!
1. a)\(2\&\sqrt{5}\)
\(2=\sqrt{4}\)
=> \(2< \sqrt{5}\)
b)\(5\&\sqrt{23}\)
\(5=\sqrt{25}\)
=> \(5>\sqrt{23}\)
c) \(\sqrt{23}+\sqrt{13}\&\sqrt{83}\)
\(\left(\sqrt{23}+\sqrt{13}\right)^2=36+2\sqrt{229}\)
\(\left(\sqrt{83}\right)^2=83\)
\(\Rightarrow36+2\sqrt{299}< 83\)
=> \(\sqrt{23}+\sqrt{13}< \sqrt{83}\)
2. a) \(\sqrt{x}=5;x\ge0\)
=> x = 25
b) \(3\sqrt{x}=6;x\ge0\)
=> x = 4
c) trùng
d) \(3-\sqrt{3+1}=1\)
\(3-\sqrt{3+1}=3-2=1\)
1)
a)\(2=\sqrt{4}< \sqrt{5}\)
b) \(5=\sqrt{25}>\sqrt{23}\)
c) \(\sqrt{83}>\sqrt{81}=9\)
\(\left\{{}\begin{matrix}\sqrt{23}< \sqrt{25}=5\\\sqrt{13}< \sqrt{16}=4\end{matrix}\right.\)
\(\sqrt{23}+\sqrt{13}< 4+5=9\)
Vậy \(\sqrt{23}+\sqrt{13}< \sqrt{83}\)
2) Ta có:
\(\sqrt{x}=5\Rightarrow x=25\)
\(3\sqrt{x}=6\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(3-\sqrt{3+1}=1\)
Nên:
\(3-2=1\)(luôn đúng)
mình nghĩ là C.
chưa chắc đâu
Bài giải
Ta có : \(\sqrt{x^6}=x^3\)
\(\Rightarrow\text{ }\) Ta chọn C