K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

\(\left(\sqrt{8+3\sqrt{7}+\sqrt{8-3\sqrt{7}}}\right)^2\)

=\(8+3\sqrt{7}+8-3\sqrt{7}+2\sqrt{64-63}\)

=16+2=18

13 tháng 8 2016

\(\left(\sqrt{8+3\sqrt{7}}+\sqrt{8-3\sqrt{7}}\right)^2=16+2\sqrt{8^2-\left(3\sqrt{7}\right)^2}=16+2=18\)

a) Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

3 tháng 10 2019

Chọn đáp án C.

a: Khi x=16/9 thì \(A=\left(\dfrac{4}{3}-2\right):\left(\dfrac{4}{3}-3\right)=\dfrac{-2}{3}:\dfrac{-5}{3}=\dfrac{2}{5}\)

b: \(=\dfrac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}-10}{x-4}\)

\(=\dfrac{x-4\sqrt{x}-16}{x-4}\)

5 tháng 12 2023

Lỗi hình rồi em!

1 tháng 12 2021

\(a,Q=\left(A-B\right)\left(A+B\right)\\ b,ĐK:A,B\in R\)

1 tháng 12 2021

Làm câu c) Tính giá trị của biểu thức

7 tháng 6 2021

ĐK: \(\left\{{}\begin{matrix}x-2\sqrt{x}-3\ne0\\\sqrt{x}+1\ne0\\3-\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)\ne0\\\sqrt{x}+1\ne0\left(hiển-nhiên\right)\\x\ne\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow x\ne\sqrt{3}\)

\(P=\dfrac{x\sqrt{x}-3}{x-2\sqrt[]{x}-3}-\dfrac{2\left(\sqrt{x-3}\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)

\(\Leftrightarrow\dfrac{x\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(-\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow\dfrac{x\sqrt{x}-3-2\left(x-9\right)-x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x+1}\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow\dfrac{\left(x-4\right)\sqrt{x}-3x+12}{\left(\sqrt{x+1}\right)\left(\sqrt{x}-3\right)}\)

Chúc bạn học tốt ^^

7 tháng 6 2021

Không thấy câu b =))

\(x=14-6\sqrt{5}=\left(3+\sqrt{5}\right)^2\)

\(\Rightarrow\sqrt{x}=3+\sqrt{5}\)

Thay vào ta được

\(\dfrac{14-6\sqrt{5}-3\left(14-6\sqrt{5}\right)+12}{\left(3+\sqrt{5}+1\right)\left(3+\sqrt{5}-3\right)}\)

\(=\dfrac{12\sqrt{5}-16}{\left(4+\sqrt{5}\right)\sqrt{5}}=\dfrac{12\sqrt{5}-16}{4\sqrt{5}+5}\)

19 tháng 12 2023

a:

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne4\end{matrix}\right.\)

 \(A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right)\cdot\dfrac{a-4}{\sqrt{4a}}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)+\sqrt{a}\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\cdot\dfrac{a-4}{2\sqrt{a}}\)

\(=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}=\dfrac{2a}{2\sqrt{a}}=\sqrt{a}\)

b: A-2<0

=>\(\sqrt{a}-2< 0\)

=>\(\sqrt{a}< 2\)

=>0<=a<4

kết hợp ĐKXĐ, ta được: 0<a<4

c: Để \(\dfrac{4}{A+1}=\dfrac{4}{\sqrt{a}+1}\) là số nguyên thì

\(\sqrt{a}+1\inƯ\left(4\right)\)

=>\(\sqrt{a}+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(\sqrt{a}\in\left\{0;-2;1;-3;3;-5\right\}\)

=>\(\sqrt{a}\in\left\{0;1;3\right\}\)

=>\(a\in\left\{0;1;9\right\}\)

Kết hợp ĐKXĐ, ta được: \(a\in\left\{1;9\right\}\)

19 tháng 12 2023

a) \(A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right)\cdot\dfrac{a-4}{\sqrt{4a}}\left(dkxd:a\ge0;a\ne4\right)\)

\(=\left[\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}+\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\right]\cdot\dfrac{a-4}{2\sqrt{a}}\)

\(=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}\)

\(=\dfrac{2a}{2\sqrt{a}}\)

\(=\sqrt{a}\)

b) Để \(A-2< 0\) thì: \(\sqrt{a}-2< 0\)

\(\Rightarrow\sqrt{a}< 2\)

\(\Rightarrow a< 4\)

Kết hợp với điều kiện xác định của \(a\), ta được: \(0\le a< 4\)

c) Để \(\dfrac{4}{A+1}\) nguyên thì \(\dfrac{4}{\sqrt{a}+1}\) nguyên

\(\Rightarrow4⋮\sqrt{a}+1\)

\(\Rightarrow\sqrt{a}+1\inƯ\left(4\right)\)

Mà \(\sqrt{a}+1\ge1\forall a\ge0;a\ne4\)

\(\Rightarrow\sqrt{a}+1\in\left\{1;2;4\right\}\)

\(\Rightarrow\sqrt{a}\in\left\{0;1;3\right\}\)

\(\Rightarrow a\in\left\{0;1;9\right\}\)

Kết hợp với điều kiện xác định của \(a\), ta được: \(a\in\left\{0;1;9\right\}\)

\(\text{#}Toru\)