\(\sqrt{x-1}+\sqrt{2x^2-5x+7}\) là ........... <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

Xét \(A^2=\left(\sqrt{x-1}+\sqrt{2x^2-5x+7}\right)^2\)

\(A^2=x-1+2x^2-5x+7+2\sqrt{\left(x-1\right)\left(2x^2-5x+7\right)}\)

\(A^2=2x^2-4x+6+2\sqrt{\left(x-1\right)\left(2x^2-5x+7\right)}\)

\(A^2=2\left(x-1\right)^2+4+2\sqrt{\left(x-1\right)\left(2x^2-5+7\right)}\)

\(A^2\ge4\Rightarrow A\ge2\)

19 tháng 3 2017

m=-5/4 đó bạn

19 tháng 3 2017

bạn giải như thế nào vậy

7 tháng 6 2017

\(\sqrt{18-2\sqrt{65}}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{13}\right)^2}\)

\(=\sqrt{13}-\sqrt{5}\)

17 tháng 3 2017

dùng sơ đồ hocne với đồng nhất thử đi bạn

có lẻ đc đấy

17 tháng 3 2017

giải chi tiết ra đi bạn

3 tháng 8 2017

Câu hỏi của nguyễn khắc biên - Toán lớp 9 - Học toán với OnlineMath

2 tháng 3 2017

nhân 0 vào 2 vế ta có:

5x0=7x0

0=0

Vậy 5=7 điều phải chứng minh

2 tháng 3 2017

voi cach c/m cua bn thi DAI SO cua Toan loan het ak

VD:4^2=-4^2 chang han 0=-2=-99...=99...

24 tháng 5 2017

1, đk: \(x>0\)\(x\ne4\)

Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)

Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\)\(x\ne4\)

\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)

\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)

Vậy MinA=1 khi x=1

2, đk: \(x\ge0;x\ne1;x\ne9\)

Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)

Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)

\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MaxB=-1 khi x=4

3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)

Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)

Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)

\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)

\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MinC=\(\dfrac{1}{11}\) khi x=4