Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-x+\sqrt{x}+2\left(ĐK:x\ge0\right)\\ =-\left(x-\sqrt{x}-2\right)\\ =-\left(x-\sqrt{x}+\frac{1}{4}-\frac{9}{4}\right)\\ =-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{9}{4}\\ =-\left(\sqrt{x}-\frac{1}{2}\right)^2+2,25\)
Vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\) với mọi x\(\ge\)0
=> \(-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\) vowis mọi x\(\ge0\)
=> \(-\left(x-\frac{1}{2}\right)^2+2,25\le2,25\) với mọi x\(\ge0\)
Vậy GTLN của A là 2,25 khi x=\(\frac{1}{2}\)
Giá trị lớn nhất của biểu thức frac{\sqrt{x}}{x+1} là
(Nhập kết quả dưới dạng số thập phân gọn nhất)
a/ ĐKXĐ: $x\leq 2$
Áp dụng BĐT AM-GM:
$\sqrt{2-x}\leq (2-x)+\frac{1}{4}=\frac{9}{4}-x$
$\Rightarrow B=x+\sqrt{2-x}\leq x+\frac{9}{4}-x=\frac{9}{4}$
Vậy $B_{\max}=\frac{9}{4}$
Giá trị này đạt tại $2-x=\frac{1}{4}\Leftrightarrow x=\frac{7}{4}$
b/ ĐKXĐ: $x\geq \frac{-3}{2}$
PT $\Leftrightarrow \sqrt{2x+3}=16-x$
$\Rightarrow 2x+3=(16-x)^2=x^2-32x+256$
$\Leftrightarrow x^2-34x+253=0$
$\Leftrightarrow (x-23)(x-11)=0$
$\Rightarrow x=23$ hoặc $x=11$
Thử lại thấy $x=11$ thỏa mãn
Vậy tập nghiệm của phương trình là $\left\{11\right\}$
đặt \(\sqrt{3-x}=t\Rightarrow t^2=3-x=>x=3-t^2\) ĐK x<=3=> t>=0
E=t+3-t^2
E=3+1/4-(t-1/2)^2
=> E>=13/4 khi t=1/2=> x=11/4
GTNN của P là \(\frac{15}{2}\). Đẳng thức xảy ra khi và chỉ khi a=1/3;b=4/5;c=3/2.
vì x+y=1\(\Rightarrow\sqrt{1-x}=\sqrt{x+y-x}=\sqrt{y}\)
\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}=\frac{x+y+y}{\sqrt{y}}=\frac{y+1}{\sqrt{y}}=\frac{y+\frac{1}{2}}{\sqrt{y}}+\frac{1}{2\sqrt{y}}\)
ad cau-chy có \(y+\frac{1}{2}\ge2\sqrt{\frac{y}{2}}=\sqrt{2y}\)\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}\ge\sqrt{2}+\frac{1}{2\sqrt{y}}\)
Tương tự .....\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\)
cm \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\ge\frac{4}{\sqrt{2\left(x+y\right)}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}.2\sqrt{2}=3\sqrt{2}\)
Dấu = xra khi x=y=1/2
k cho mk nha mn ^.^
Áp dụng bất đẳng thức Cauchy, ta có: \(\sqrt{x\left(2x+y\right)}=\frac{1}{\sqrt{3}}.\sqrt{3x\left(2x+y\right)}\le\frac{5x+y}{2\sqrt{3}}\)
Tương tự: \(\sqrt{y\left(2y+x\right)}\le\frac{5y+x}{2\sqrt{3}}\)
\(\Rightarrow\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}\le\frac{6\left(x+y\right)}{2\sqrt{3}}=\frac{3\left(x+y\right)}{\sqrt{3}}\)\(\Rightarrow P=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\ge\frac{x+y}{\frac{3}{\sqrt{3}}\left(x+y\right)}=\frac{1}{\sqrt{3}}\)
Đẳng thức xảy ra khi x = y
X=1,2
Ưmmm hình như sai