K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)

\(=x^2-4x+3+11\)

\(=x^2-4x+4+8\)

\(=\left(x-2\right)^2+8\ge8\forall x\)

Dấu '=' xảy ra khi x=2

b: Ta có: \(B=-4x^2+4x+5\)

\(=-\left(4x^2-4x+1-6\right)\)

\(=-\left(2x-1\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

a: \(\dfrac{2x-2}{3}>=\dfrac{x+3}{6}\)

=>4x-4>=x+3

=>3x>=7

=>x>=7/3

b: (x+3)^2<(x-2)^2

=>6x+9<4x-4

=>2x<-13

=>x<-13/2

c: \(\dfrac{2x-3}{3}-x< =\dfrac{2x-3}{5}\)

=>2/3x-1-x<=2/5x-3/5

=>-11/15x<2/5

=>x>-6/11

24 tháng 11 2021

tl mình nha

24 tháng 11 2021

a) \(A=\left(x-1\right)\left(x-3\right)+11\)

\(=x\left(x-3\right)-\left(x-3\right)+11\)

\(=x^2-3x-x+3+11\)

\(=x^2-4x+14\)

\(=\left(x^2-4x+4\right)+10\)

\(=\left(x-4\right)^2+10\)

Vì \(\left(x-4\right)^2\) ≥ 0

⇒ A ≥ 10

Min A=10 ⇔ x=4

b) tương tự

11 tháng 7 2016

Cho x2_60x+900=0

Suy ra:x2_2.x.30+302=0

(x-30)2=0

suy ra x-30=0

vậy x=30

6 tháng 5 2022

\(A=m^2-2m-5\)

\(=m^2-2m+1-6\)

\(=\left(m-1\right)^2-6\ge-6\)

Dấu '' = '' xảy ra khi \(\left(m-1\right)^2=0\Leftrightarrow m=1\)

Vậy \(Min_A=-6\) khi \(m=1\)

6 tháng 5 2022

\(A=m^2-2m-5\)

\(=\left(m^2-2m+1\right)-6\)

\(=\left(m-1\right)^2-6\ge-6\left(Vì\left(m-1\right)^2\ge0\forall m\right)\)

Min \(A=-6\Leftrightarrow m=1\)

6 tháng 5 2022

`A=m^2-2m-5`

`A=m^2-2m+1-6`

`A=(m-1)^2-6`

 Vì `(m-1)^2 >= 0 AA m`

`=>(m-1)^2-6 >= -6 AA m`

 Hay `A >= -6 AA m`

Dấu "`=`" xảy ra `<=>(m-1)^2=0<=>m-1=0<=>m=1`

Vậy `GTN N` của `A` là `-6` khi `m=1`

27 tháng 12 2021

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

27 tháng 12 2021

giải cho mình bài 2 lun đc ko