K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

30 tháng 10 2019

a)ĐKXĐ:x>0

P=\(\left(\frac{3}{x-1}-\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\left(vớix>0\right)\)

=\(\left[\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]:\frac{1}{\sqrt{x}+1}\)

=\(\left[\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]:\frac{1}{\sqrt{x}+1}\)

= \(\left[\frac{3-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\frac{1}{\sqrt{x}+1}\)

=\(\frac{4-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{1}\)

=\(\frac{4-\sqrt{x}}{\sqrt{x}-1}\)

b)Để P=\(\frac{5}{4}\left(vớix>0\right)\)

\(\Leftrightarrow\frac{4-\sqrt{x}}{\sqrt{x}-1}=\frac{5}{4}\)

\(\Leftrightarrow\frac{4-\sqrt{x}}{\sqrt{x}-1}-\frac{5}{4}=0\)

\(\Leftrightarrow\frac{4\left(4-\sqrt{x}\right)}{4\left(\sqrt{x}-1\right)}-\frac{5\left(\sqrt{x}-1\right)}{4\left(\sqrt{x}-1\right)}=0\)

\(\Rightarrow16-4\sqrt{x}-5\sqrt{x}+5=0\)

\(\Leftrightarrow21-9\sqrt{x}=0\)

\(\Leftrightarrow-9\sqrt{x}=-21\)

\(\Leftrightarrow\sqrt{x}=\frac{7}{3}\)

\(\Leftrightarrow x=\frac{21}{9}\)

Vậy:Để P=\(\frac{5}{4}\)thì x=\(\frac{21}{9}\)

c)Còn phần c thì mik chịuhahahahahahahahahaha

22 tháng 10 2021

...

3 tháng 6 2017

\(B=x^2-2x+y^2-4x+7=x^2-6x+9+y^2-2=\left(x-3\right)^2+y^2-2\)\(\left(x-3\right)^2\ge0\)\(y^2\ge0\) nên \(B\ge-2\)

đẳng thức xảy ra khi và chỉ khi \(x=3\)\(y=0\)

vậy MIN B = -2 tại x=3 và y=0

3 tháng 6 2017

mình nghĩ là theo đề thì chỗ kia phải là -4y chứ sao lại -4x nhỉ ???

31 tháng 7 2019

\(a.A=\frac{5\sqrt{x}+4}{x+\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}.\)

\(=\frac{5\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)\(+\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)\(-\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{5\sqrt{x}+4+x-2\sqrt{x}+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{-\sqrt{x}+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=-\frac{1}{\sqrt{x}+2}\)

\(b,4A_{min}\Leftrightarrow A_{min}\Rightarrow\frac{-1}{\sqrt{x}+2}\)nhỏ nhất

\(\frac{\Rightarrow1}{\sqrt{x}+2}\)lớn nhất \(\Leftrightarrow\sqrt{x}+2\)nhỏ nhất

\(\sqrt{x}+2\ge2\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)

\(\Rightarrow A_{min}=\frac{-1}{0+2}=-\frac{1}{2}\Rightarrow4A_{min}=-1\Leftrightarrow x=0\)

8 tháng 3 2018

Hình như đề sai rùi bạn ơi !

Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác

Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu

Mk nói có gì sai thì thông cảm nha !

8 tháng 3 2018

đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà

1 tháng 11 2017

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)

24 tháng 3 2016

là 2013 đó bn