Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)
Các số dương \(x\)và \(\frac{144}{x}\)Có tích ko đổi nên tổng nhỏ nhất khi và chỉ khi \(x=\frac{144}{x}\)
\(\Rightarrow x=12\)
Vậy \(Min\)\(A=49\Leftrightarrow x=12\)
Ta có:
\(A=\frac{\left(x+16\right)\left(x+19\right)}{x}\)
\(=\frac{x^2+25x+144}{x}=\frac{\left(x+12,5\right)^2-12,25}{x}\)
\(=\frac{\left(x+12,5\right)^2}{x}-\frac{12,25}{x}\ge\frac{-12,5}{x}\forall x>0\)
Đến đây dễ rồi bạn tự làm nốt !
Tự tìm Đkxđ nha.
1/(3y^2 - 10y +3) = 6y/(9y^2 - 1) + 2/(1 - 3y)
=>1/(3y^2 -9y -y +3)=6y/(3y- 1)(3y+ 1)- 2(3y+ 1)/(3y - 1)(3y+ 1)
=>1/(y- 3)(3y -1)=-1/(3y -1)(3y +1)
=>(3y+ 1)/(y- 3)(3y -1)(3y+ 1)=(y -3)/(3y- 1)(3y +1)
=>3y+ 1= y- 3
Đến đây tự làm nha
a)ĐKXĐ:\(\hept{\begin{cases}y\ne3\\y\ne\frac{1}{3}\\y\ne-\frac{1}{3}\end{cases}}\)
\(\frac{1}{3y^2-10y+3}=\frac{6y}{9y^2-1}+\frac{2}{1-3y}\)
\(\Leftrightarrow\frac{1}{\left(y-3\right)\left(3y-1\right)}=\frac{6y}{\left(3y-1\right)\left(3y+1\right)}-\frac{2}{3y-1}\)
\(\Leftrightarrow\frac{3y+1}{\left(y-3\right)\left(3y-1\right)\left(3y+1\right)}=\frac{6y\left(y-3\right)}{\left(3y-1\right)\left(3y+1\right)\left(y-3\right)}-\frac{2\left(3y+1\right)\left(y-3\right)}{\left(3y-1\right)\left(3y+1\right)\left(y-3\right)}\)
\(\Rightarrow6y^2-18y-2\left(3y^2-9y+y-3\right)-3y-1=0\)
\(\Leftrightarrow6y^2-18y-6y^2+18y-2y+6-3y-1=0\)
\(\Leftrightarrow5-5y=0\)
\(\Leftrightarrow5y=5\Leftrightarrow y=1\)(t/m ĐKXĐ)
Vậy....
Ta có: \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)
Các số dương : x và \(\frac{144}{x}\) có tích k đổi nên tổng nhỏ nhất và chỉ khi \(x=\frac{144}{x}\)=> x=12
Vậy Min A = 49 khi và chỉ khi x=12
\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+25+\frac{144}{x}\)
Vì \(x>0\)\(\Rightarrow\) Áp dụng bđt Cô si ta có:
\(x+\frac{144}{x}\ge2\sqrt{x.\frac{144}{x}}=2.\sqrt{144}=2.12=24\)
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{144}{x}\)\(\Leftrightarrow x^2=144\)\(\Leftrightarrow x=12\)( do \(x>0\))
\(\Rightarrow A\ge25+24=49\)
Vậy \(minA=49\)\(\Leftrightarrow x=12\)
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9\)
\(\Leftrightarrow\)\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+\frac{8x}{8}\right)+9\)
\(\Leftrightarrow\)\(P=\frac{x^2}{x+4}.\left(\frac{\left(x+4\right)^2}{x}\right)+9\)(Không viết ngoặc vuông được nên để ngoặc tròn luôn, đừng ném đá, em không cần đá xây nhà)
\(\Leftrightarrow P=x\left(x+4\right)+9\)
\(\Leftrightarrow P=x^2+4x+9\)
\(\Leftrightarrow P=\left(x^2+4x+4\right)+5\)
\(\Leftrightarrow P=\left(x+2\right)^2+5\)
\(\Rightarrow Min_P=5\) tại \(x=-2\)
Dễ mà bạn:\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9\)
\(P=\frac{x^2}{x+4}\left(\frac{x^2+8x+16}{x}\right)+9\)
\(P=\frac{x^2}{x+4}.\frac{\left(x+4\right)^2}{x}+9\)
\(P=x\left(x+4\right)+9=x^2+4x+9\)
\(P=x^2+4x+4+5=\left(x+2\right)^2+5\ge5\)
Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)
Vậy minP=5 khi x=-2
ĐK: x khác 0 và x khác -4
\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9=\frac{x^2}{x+4}\frac{\left(x+4\right)^2}{x}+9=x\left(x+4\right)+9=x^2+4x+4+5=\left(x+2\right)^2+5\ge5\)
GTNN P=5 khi x=-2