Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(M=\left|x+3\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|\)
Áp dụng BĐT :
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\Rightarrow M\ge\left|x+3+5-x\right|=8\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x+3\ge0\\5-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x\le5\end{matrix}\right.\)
Vậy GTNN của \(M=8\) xảy ra khi \(-3\le x\le5\)
Giải:
Ta có:
\(\left\{{}\begin{matrix}\left|x+3\right|\ge x+3\\\left|x-2\right|\ge0\\\left|x-5\right|\ge5-x\end{matrix}\right.\)
\(\Leftrightarrow\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge x+3+5-x\)
\(\Leftrightarrow\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge3+5\)
\(\Leftrightarrow\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge8\)
\(\Leftrightarrow P_{Min}=8\)
Dấu "=" xảy ra:
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy ...
Do : | \(x+3\) | + | \(x-5\) | = | x + 3| + | 5 - x | ≥ | x + 3 + 5 - x | = 8
| x - 2 | ≥ 0
⇒ | \(x+3\) | + | \(x-5\) | + | x - 2 | ≥ 8
⇒ \(P_{Min}=8\) ⇔ - 3 ≤ x ≤ 5 và x = 2
Câu 2:
\(A=3\left(2x+9\right)^2-1>=-1\)
Dấu '=' xảy ra khi x=-9/2
Câu 9:
=>(x-30)^2=0
=>x-30=0
=>x=30
Câu 10:
\(=2x^2+6x-4x-12-2x^2-2x=-12\)
D=(x-1)(x+5)(x-3)(x+7)
=(x2+4x-5)(x2+4x-21)
=(x2+4x-5)2-16(x2+4x-5)
=[(x2+4x-5)2-16(x2+4x-5)+64]-64>=-64
a) \(A=\left(x-3\right)\left(x+5\right)+20\)
\(\Leftrightarrow A=x^2+5x-3x-15+20\)
\(\Leftrightarrow A=x^2+2x+5\)
\(\Leftrightarrow A=x^2+2x+1+4\)
\(\Leftrightarrow A=\left(x+1\right)^2+4\ge4\)
GTNN của A = 4
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ..........................
\(D=\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)\)
\(D=\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)\)
\(D=\left(x^2+4x-5\right)\left(x^2+4x-21\right)\)
Đặt \(t=x^2+4x-13\) ta được:
\(D=\left(t+8\right)\left(t-8\right)\)
\(D=t^2-64\)
\(D=\left(x^2+4x-13\right)^2-64\ge-64\)
Vậy GTNN của D là -64 khi x = \(-2+\sqrt{17}\) hoặc x = \(-2-\sqrt{17}\)
2. \(Q=\left(x-3\right)\left(4x+5\right)+2019\)
\(Q=4x^2+5x-12x-15+2019\)
\(Q=4x^2-7x+2004\)
\(Q=\left(2x\right)^2-2.2x.\frac{7}{4}+\frac{49}{16}+2019-\frac{49}{16}\)
\(Q=\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\)
\(Do\) \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\) \(Nên\) \(\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\ge\frac{32255}{16}\)
\(\Rightarrow Q\ge\frac{32255}{16}\)
\(Vậy\) \(MinQ=\frac{32255}{16}\Leftrightarrow x=\frac{7}{8}\)
3. \(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(T=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(T=4\left(a^2-ab+b^2\right)-6a^2-6b^2\) (do a+b=1)
\(T=4a^2-4ab+4a^2-6a^2-6b^2\)
\(T=-2a^2-4ab-2b^2\)
\(T=-2\left(a^2+2ab+b^2\right)\)
\(T=-2\left(a+b\right)^2\)
\(T=-2.1^2=-2.1=-2\) (do a+b=1)
\(C=4x^2+3+4x\)
\(C=\left[\left(2x\right)^2+2.2x+1\right]+2\)
\(C=\left(2x+1\right)^2+2\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2+2\ge2\forall x\)
\(C=2\Leftrightarrow\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy \(C=2\Leftrightarrow x=-\frac{1}{2}\)
\(Q=\left(x-3\right)\left(4x+5\right)+2019\)
\(=4x^2-7x-15+2019\)
\(=4x^2-7x+2004\)
\(=\left(2x-\frac{7}{4}\right)^2+\frac{32015}{16}\ge\frac{32015}{16}\forall x\)
Dấu "=" xảy ra<=>\(\left(2x-\frac{7}{4}\right)^2=0\Leftrightarrow2x=\frac{7}{4}\Leftrightarrow x=\frac{7}{8}\)
\(x^{2016}\ge0\)
\(\Rightarrow x^{2016}+5\ge5\)
\(\Rightarrow\left(x^{2016}+5\right)^3\ge5^3\ge125\)
Dấu ''='' xảy ra khi x = 0
\(Min=125\Leftrightarrow x=0\)
Phương An ahihi đc rồi