Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức sau:
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Ta có: K = |x - 2,13| + |x+ 2,56|
\(\Rightarrow K=\left|2,13-x\right|+\left|x+2,56\right|\ge\left|2,13-x+x+2,56\right|\)
\(\Rightarrow K=\left|2,13-x\right|+\left|x+2,56\right|\ge\left|4,69\right|=4,69\)
Vậy, minK = 4,69 khi x = 2,13 hoặc x = -2,56
\(G=\left|x-4\right|+\left|x+6\right|\)
\(G=\left|x-4\right|+\left|-\left(x+6\right)\right|\)
\(G=\left|x-4\right|+\left|-6-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(G=\left|x-4\right|+\left|-6-x\right|\ge\left|x-4-6-x\right|=\left|-10\right|=10\)
Đẳng thức xảy ra khi \(ab\ge0\)
=> \(\left(x-4\right)\left(-6-x\right)\ge0\)
Xét hai trường hợp :
1/ \(\hept{\begin{cases}x-4\ge0\\-6-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge4\\-x\ge6\end{cases}}\Rightarrow\hept{\begin{cases}x\ge4\\x\le-6\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}x-4\le0\\-6-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le4\\-x\le6\end{cases}\Rightarrow}\hept{\begin{cases}x\le4\\x\ge-6\end{cases}}\Rightarrow-6\le x\le4\)
=> GMin = 10 , đạt được khi \(-6\le x\le4\)
\(G=|x-4|+|x+6|=|-\left(x-4\right)|+|x+6|\)
\(=|-x+4|+|x+6|=|4-x|+|x+6|\)
Sử dụng bất đẳng thức \(|a|+|b|\ge|a+b|\)ta có :
\(|4-x|+|x+6|\ge|4-x+x+6|=|10|=10\)
Dấu = xảy ra \(\Leftrightarrow\left(4-x\right)\left(x+6\right)\ge0\Leftrightarrow-6\le x\le4\)