K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

Vì |x-2010| ≧ 0 với mọi x

    |x-2012| ≧ 0 với mọi x

   |x-2014| ≧ 0 với mọix

Suy ra : |x-2010|+|x-2012|+|x-2014| ≧ 0

hay A ≧ 0

Dấu =xảy ra <=> \(\hept{\begin{cases}\left|x-2010\right|=0\\\left|x-2012\right|=0\\\left|x-2014\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x-2010=0\\x-2012=0\\x-2014=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2010\\x=2012\\x=2014\end{cases}}\)

Vậy GTNN(A) = 0 <=> x ∈ { 2010;2012;2014}

29 tháng 3 2019

Từ đầu đến A>= 0 là đúng nhưng dưới là sai nhé bạn!

17 tháng 9 2016

Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2010\right|+\left|x-2011\right|\ge\left|x-2010+2011-x\right|=1\)

\(\Rightarrow A\ge1\)

Dấu = khi \(\left(x-2010\right)\left(x-2011\right)\ge0\)\(\Leftrightarrow2010\le x\le2011\)

\(\Rightarrow\begin{cases}\left(x-2010\right)\left(x-2011\right)\\2010\le x\le2011\end{cases}\)\(\Rightarrow\begin{cases}x=2010\\x=2011\end{cases}\)

Vậy MinA=1 khi x=2010 hoặc x=2011

18 tháng 9 2016

Ta có:

\(B-2011=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(\ge x-1+0+3-x=2\)

\(\Rightarrow B-2011\ge2\)\(\Rightarrow B\ge2013\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2=0\\3-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x=2\\x\le3\end{cases}\)\(\Leftrightarrow x=2\)

Vậy MinB=2013 khi x=2

 

15 tháng 11 2015

|x + 5| > 0

- |x + 5| < 0

3,5 - |x + 5| < 3,5

\(A=\frac{1}{3,5-\left|x+5\right|}\ge\frac{1}{3,5}=\frac{2}{7}\)

\(\Rightarrow A_{min}=\frac{2}{7}\Leftrightarrow x=-5\)

13 tháng 3 2016

x = 8 hoặc x = -4 thì 10 - 3 | x - 5| đạt giá trị nhỏ nhất bằng 1

13 tháng 3 2016

x=2 hoặc x=8