Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-1,3\right|-4,8+\left|y-2,1\right|\)
Vì: \(\left|x-1,3\right|+\left|y-2,1\right|\ge0\)
=> \(\left|x-1,3\right|+\left|y-2,1\right|-4,8\ge-4,8\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1,3=0\\y-2,1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1,3\\y=2,1\end{cases}}\)
Vậy GTNN của A là -4,8 khi x=1,3;y=2,1
\(\left|x-1,3\right|\ge0\\ \left|y-2,1\right|\ge0\)
\(\Rightarrow A=\left|x-1,3\right|-4,8+\left|y-2,1\right|\ge0-4,8+0=-4,8\)
\(\Rightarrow A=-4,8\) khi \(x-1,3=0\) và \(y-2,1=0\) hay \(x=1,3\) và \(y=2,1\)
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
có |x-2017|luôn\(\ge0\forall x\in Q\)
cũng có |-1|luôn\(\ge0\forall x\in Q\)
=>I x-2017 I + I x-1 I\(\ge0\forall x\in Q\)
=> I x-2017 I + I x-1 I=|x-2017|+|1-x|=|x-2017+1-x|=2016
dấu''='' xảy ra <=>(x-2017)(1-x)=0
TH1:
=>\(\orbr{\begin{cases}x-2017\ge0\\1-x\le0\end{cases}}\)
TH2:
=> \(\orbr{\begin{cases}x-2017\le0\\1-x\ge0\end{cases}}\)
tự làm típ ! xét 2 TH thấy cái nào mà nó vô lí thì đánh vô lí chọn TH còn lại nhé !
a, B = |x-5| +|2-x|
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-5\right|+\left|2-x\right|\ge\left|x-5+2-x\right|=3\)
\(\Rightarrow B\ge3\)
Dấu = khi \(\left(x-5\right)\left(2-x\right)\ge0\)\(\Rightarrow2\le x\le5\)
\(\Leftrightarrow\begin{cases}\left(x-5\right)\left(2-x\right)=0\\2\le x\le5\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\x=2\end{cases}\)
Vậy MinB=3 khi \(\begin{cases}x=5\\x=2\end{cases}\)
b)Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|y+8\right|+\left|2-y\right|\ge\left|y+8+2-y\right|=10\)
\(\Rightarrow C\ge10\)
Dấu = khi \(\left(y+8\right)\left(y-2\right)\ge0\)\(\Rightarrow-8\le x\le2\)
\(\Leftrightarrow\begin{cases}\left(y+8\right)\left(y-2\right)=0\\-8\le x\le2\end{cases}\)\(\Leftrightarrow\begin{cases}y=-8\\y=2\end{cases}\)
Vậy MinC=10 khi \(\begin{cases}y=-8\\y=2\end{cases}\)
c)Ta có:
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(\ge x-2015+0+2017-x=2\)
\(\Rightarrow P\ge2\)
Dấu = khi \(\begin{cases}x-2015\ge0\\x-2016=0\\x-2017\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\)\(\Rightarrow x=2016\)
Vậy MinP=2 khi x=2016
A=I x - 2016 I + I x - 1 I + 1
Vì |x-2016|\(\ge\)0
|x-1|\(\ge\)0
Suy ra:I x - 2016 I + I x - 1 I + 1\(\ge\)1
Dấu = xảy ra khi x-2016=0;x=2016
x-1=0;x=1
Vậy Min A=1 khi x=2016;x=1
Ta có : I x-1,3 I + I y-2,1 I lớn hơn hoặc bằng 0 với mọi x,y
=> A = I x-1,3 I + I y-2,1 I - 4,8 >= -4,8
=> A có GTNN là -4,8 <=> \(\hept{\begin{cases}x-1,3=0\\y-2,1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=1,3\\y=2,1\end{cases}}\)
Vậy GTNN của A=-4,8 <=> x=1,3 và y=2,1
nhớ nha
nhớ nha