Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left|x-y\right|\ge0;\left|x+1\right|\ge0\)
\(\Rightarrow A=\left|x-y\right|+\left|x+1\right|+2018\ge2018\forall xy\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\x=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)
Vậy ...
\(A=\left|x-y\right|+\left|x+1\right|+2018\)
Mà \(\left|x-y\right|;\left|x+1\right|\ge0\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\forall x;y\)
\(\Rightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\x=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)
Vậy A = 2018 khi x;y = -1
Để \(\text{M= 2017-2016:(2015-x)}\)đạt giá trị nhỏ nhất thì \(2016:\left(2015-x\right)\)đạt giá trị lớn nhất.
\(\Rightarrow2015-x=1\Rightarrow x=2014\)
\(\Rightarrow M=2017-2016:1=2017-2016=1\)
Vậy giá trị nhỏ nhất của M=1 khi x=2014.
Giá trị nhỏ nhất của A là 2011 (vì A đạt giá trị nhỏ nhất khi /x-y/ + /x+1/ đạt giá trị nhỏ nhất hay bằng 0)
Ta có:|x+1|>0
=>A=|x+1|+2015>2015
=>GTNN của A=2015
<=>|x+1|=0
<=>x+1=0
<=> x=-1
Vậy GTNN của A là 2015 <=> x = -1