K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 2 2019

\(A=x^2+2xy+y^2+2x^2+4x+2-2\)

\(A=\left(x+y\right)^2+2\left(x+1\right)^2-2\ge-2\)

\(\Rightarrow A_{min}=-2\) khi \(\left\{{}\begin{matrix}x+1=0\\x+y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

23 tháng 2 2019

\(A=\left(y^2+2xy+x^2\right)+\left(2x^2+4x+2\right)-2\)

\(A=\left(y+x\right)^2+2\left(x+1\right)^2-2\)

\(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\\left(x+1\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow A\ge-2\)

\(A_{min}=-2\) khi \(x=-1,y=1\)

8 tháng 6 2017

Đặt \(A=3x^2+y^2+2xy+4x\)

\(\Leftrightarrow A=y^2+2xy+x^2+2x^2+4x+2-2\)

\(\Leftrightarrow A=\left(x+y\right)^2+2\left(x+1\right)^2-2\)

       Vì \(\left(x+y\right)^2\ge0;2\left(x+1\right)^2\ge0\)

              \(\Rightarrow\left(x+y\right)^2+2\left(x+1\right)^2-2\ge-2\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+y=0\\x+1=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=-1\end{cases}}\)

        Vậy Min A=-2 khi \(y=1;x=-1\)

8 tháng 6 2017

\(3x^2+y^2+2xy+4x\)

\(=x^2+2xy+y^2+2x^2+4x+2-2\)

\(=\left(x+y\right)^2+2.\left(x+1\right)^2-2\ge-2\)

Dấu bằng xảy ra khi

\(\hept{\begin{cases}x=-y\\x=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\x=-1\end{cases}}}\)

Vậy Min \(3x^2+y^2+2xy+4x\)=2 khi x=-1;y=1

23 tháng 2 2019

-2

1 tháng 6 2016

\(B=\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)+2016\)

\(B=\left(x+y\right)^2+\left(y-2\right)^2+2016\)

Vậy Min B =2016 <=> x=-2;y=2

4 tháng 11 2017

bằng 1 nha bạn

16 tháng 6 2017

 \(x^2-2x+y^2-4x+7=x^2-2x+1+y^2-4x+4+2\)

=\(\left(x-1\right)^2+\left(y-2\right)^2+2\) \(\ge2\) dau = xay ra\(\Leftrightarrow x=1,y=2\)

\(\)vay min =2 

17 tháng 6 2017

mk k hiểu cách bn kia làm bừa theo cách này vậy 

x^2 - 6x +7 +y^2 <=>(x-3)^2 +y^2 -2 >= -2

dấu bằng xáy ra khi x =3 y =0 min = -2 hay 2 j đó 

( sai thf thui nha bn)

15 tháng 6 2015

\(P=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+xy-x-y+1+2012=\left(x-1\right)^2+\left(y-1\right)^2-\left(x-1\right)\left(y-1\right)+2012\)

\(P=\left(\left(x-1\right)^2-\left(x-1\right)\left(y-1\right)+\frac{\left(y-1\right)^2}{4}\right)+\frac{3\left(y-1\right)^2}{4}+2012=\left(x-1-\frac{y-1}{2}\right)^2+\frac{3\left(y-1\right)^2}{4}+2012\ge2012\)

=> Min P=2012 <=> \(\frac{2x-2-y+1}{2}=0\Leftrightarrow2x-y-1=0\) và \(\frac{3\left(y-1\right)^2}{4}=0\Leftrightarrow y=1\)=> \(2x-1-1=0\Leftrightarrow x=1\)