Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị nhỏ nhất của phép tính là 2014
Vì Cho x = 0 thì |2013x+2014|=2014
Vậy giá trị nhỏ nhất luôn luôn là 2014
Ta có : x = 2014
=> 2013 = x - 1
Nên M = x10 - (x - 1)x9 - (x - 1).x8 - ...... - (x - 1)x - 1
= x10 - x10 + x9 - x9 - x8 + ....... + x - 1
= x - 1
= 2014 - 1
= 2013
Vậy M = 2013 Good
P=|x-2013|+|x-2014|
=> P = |x-2013| +|2014-x|
Áp dụng bất đẳng thức về giá trị tuyệt đối :
| x - 2013 | + | 2014 - x | >hoặc = | x - 2013 + 2014 -x | = 1 với mọi x
Dấu = xảy ra <=> (x-2013)(2014-x) >hoặc = 0
=>(x-2013)(x-2014)< hoặc =0
=>x-2013 và x-2014 trái dấu
x-2013>x-2014
=>x-2013>hoặc = 0 và x-2014 < hoặc = 0
2013< hoặc =x< hoặc = 2014
Vậy giá trị nhỏ nhất của P = 1 tại 2013< hoặc = x < hoặc = 2014
ADBDT |A|+|B|>=|A+B| Ta có
|x-2014|+|2015-x|>=|x-2014+2015-x|
N>=|x-x-2014+2015|
N>=|1|
N>=1
Vậy GTNN Của N là 1
ta có \(\left|2013x+2014\right|\ge0\) với mọi x
trường hợp dấu bằng xảy ra khi và chỉ khi
2013x + 2014 = 0
=> x = -2014/2013
vậy giá trị nhỏ nhất của biểu thức là 0 khi và chỉ khi x= -2014/2013