K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Mât dạng này thường có thể giải quyết trọn vẹn băng delta

3 tháng 2 2017

\(A=\frac{\left(x+1\right)^2+8}{7-\left(y+1\right)^2}\) => không có GTNN cũng chẳng có LN

27 tháng 12 2014

Ta có:\(\frac{-2x-2}{x^2+3}=\frac{-x^2-3+x^2-2x+1}{x^2+3}=\frac{-x^2-3}{x^2+3}+\frac{x^2-2x+1}{x^2+3}=-1+\frac{\left(x-1\right)^2}{x^2+3}\ge-1\)

Vậy \(\frac{-2x-2}{x^2+3}min=-1\) tại \(x=1\).

10 tháng 2 2019

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

3 tháng 11 2015

vì x+y=4 nền (x+y)^2=4^2                                                                                                                                                                                            =x^2+ 2xy+y^2=16        ma  xy=5 nên 2xy=10  ta có x^2+y^2+10=16 ; x^2+y^2= 16-10                                                                                                                                                                                     x^2+y^2=6                                     kết quả mik là z đó nhưng k biết có đúng k bn ak