K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left|2009x-2010\right|\ge0\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2010}{2009}\)

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:

$|2009x-2010|\geq 0$ với mọi $x\in\mathbb{R}$ theo tính chất trị tuyệt đối

Vậy GTNN của $|2009x-2010|$ là $0$

Giá trị này đạt tại $2009x-2010=0$

$\Leftrightarrow x=\frac{2010}{2009}$

\(\left|2009x-2010\right|\ge0\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2010}{2009}\)

18 tháng 11 2016

GTNN = 7

26 tháng 7 2016

Với x>0thif D=x+x=2x>0                                  (1)

Với \(x\le0\) thì D=x-x=0                                 (2)

Từ (1) và(2) =>:GTNN của D bằng 0 khi và chỉ khi \(x\le0\)

mk nhé bạn ^...^ ^_^

9 tháng 10 2015

a) 29

b)14

tick nhé,tớ thi violympic rồi

24 tháng 2 2018

Ta có : 

\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)

Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\)  và có GTNN

\(\Rightarrow\)\(x=1\)

\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)

Vậy \(M_{min}=-3\) khi \(x=1\)

24 tháng 6 2019

Ta biết rằng :\(|A|\ge A\)( Dấu "=" xảy ra khi và chỉ khi A \(\ge\) 0)

                    \(|A|=|-A|\) và \(|A|\ge0\)(Dấu ''='' xảy ra khi và chỉ khi A = 0)
Ta có: \(A=|x-3|+|x-5|+|x-7|\ge x-3+0+7-x=4\)

Dấu ''='' xảy ra khi và chỉ khi 
\(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\Leftrightarrow x=5\\x\le7\end{cases}}}\)

Vậy với x = 5 thì A đạt giá trị nhỏ nhất là 4.
 

24 tháng 6 2019

A = |x - 3| + |x - 5| + |x - 7|

|x - 3| > 0

|x - 5| > x - 5

|x - 7| > 7 - x

=> A > 0 + x - 5 + 7 - x

=> A > 2

Dấu "=" xảy ra khi :

 x - 3 = 0 => x = 3

x - 5 > 0 => x > 5

 x - 7 < 0 => x < 7