K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

Bài 1:

\(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" khi \(x=\frac{1}{2}\)

Vậy \(Min=\frac{3}{4}\) khi \(x=\frac{1}{2}\)

Bài 2:

\(x^2+10x+2041=x^2+10x+25+2016\)

\(=\left(x^2+10x+25\right)+2016\)

\(=\left(x+5\right)^2+2016\ge2016\)

Dấu "=" khi \(x=-5\)

Vậy \(Min=2016\) khi \(x=-5\)

14 tháng 12 2016

nhìn là bit tu lam

6 tháng 8 2017

2.E = 4x^2 -  12x

= ( 4x^2 - 12x + 9 ) -9

=(2x-3)^2 - 9 >= -9 

<=> E >= -18 

Dấu "=" xảy ra <=> 2x-3 = 0 <=> x=3/2

Vậy GTNN của E là E = -18 <=> x =3/2

6 tháng 8 2017

Ta có : E = 2x2 - 6x 

=> E = 2(x2 - 6x + 9 - 9)

=> E = 2(x2 - 6x + 9) - 18

=> E = 2(x - 3)2 - 18

Mà ;  2(x - 3)2 \(\ge0\forall x\)

Nên: E = 2(x - 3)2 - 18 \(\ge-18\forall x\)

Vậy Emin = -18 khi x = 3

16 tháng 6 2016

Ta có: \(3\left(2x+9\right)^2\ge0\) với \(x\in R\) , dấu bằng xảy ra \(\Leftrightarrow x=-\frac{9}{2}\)

=> \(3\left(2x+9\right)^2-1\ge-1\) với \(x\in R\) , dấu bằng xảy ra \(\Leftrightarrow x=-\frac{9}{2}\)

Vậy GTNN của \(3\left(2x+9\right)^2-1\) là -1 với \(x=-\frac{9}{2}\)

27 tháng 4 2016

Giá trị nhỏ nhất của A là A=12 

27 tháng 4 2016

ta có A=3x2-6x+12>12 hoặc =12. Vậy giá trị nhỏ nhất của A=12