K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

mx2-2(m+2)x+m+1=0

\(\Delta\)=4(m+2)2 -4m(m+1)=4(m2+4m+4) -4(m2 +m)=4m2+16m+16-4m2-4m=12m-16

để pt có 2 nghiệm phân biệt thì \(\Delta\)>0 => 12m-16>0 => m>4/3 => gtrij nguyên nhỏ nhất của m để pt cps 2 nghiệm phân biệt là m=2

20 tháng 2 2020

Câu a thay x=2 vào phương trình thì tìm được \(\orbr{\begin{cases}m=-\frac{3}{2}\\m=\frac{5}{2}\end{cases}}\)\

b)  m2x- 2(m+1).x +1 =0

\(\Delta=\left[-2\left(m+1\right)\right]^2-4m^2.1\)\(=4m^2+8m+4-4m^2=4\left(2m+1\right)\)

Phương trình có 2 nghiệm phân biệt khi và chỉ khi: \(\hept{\begin{cases}a\ne0\\\Delta>0\end{cases}\Leftrightarrow\hept{\begin{cases}m^2\ne0\\4\left(2m+1\right)>0\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ne0\\m>-\frac{1}{2}\end{cases}}}\)

26 tháng 2 2021

x2 - 2( m + 1 )x + 2m - 4 = 0

1. Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 4( 2m - 4 )

= 4( m + 1 )2 - 8m + 16

= 4( m2 + 2m + 1 ) - 8m + 16

= 4m2 + 8m + 4 - 8m + 16

= 4m2 + 20

Dễ nhận thấy Δ ≥ 20 > 0 ∀ m

hay phương trình luôn có nghiệm với mọi m ( đpcm )

2. Dù là nghiệm kép hay nghiệm phân biệt thì hai nghiệm của phương trình đều viết được dưới dạng 

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{2m+2+\sqrt{4m^2+20}}{2}\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{2m+2-\sqrt{4m^2+20}}{2}\end{cases}}\)

Khi đó \(x_1^2+x_2^2=\left(\frac{2m+2+\sqrt{4m^2+20}}{2}\right)^2+\left(\frac{2m+2-\sqrt{4m^2+20}}{2}\right)^2\)

\(=\left(\frac{2m+2+2\sqrt{m^2+5}}{2}\right)^2+\left(\frac{2m+2-2\sqrt{m^2+5}}{2}\right)^2\)( em đưa 2 ra ngoài căn chắc chị hiểu )

\(=\left(\frac{2\left(m+1+\sqrt{m^2+5}\right)}{2}\right)^2+\left(\frac{2\left(m+1-\sqrt{m^2+5}\right)}{2}\right)^2\)

\(=\left(m+1+\sqrt{m^2+5}\right)^2+\left(m+1-\sqrt{m^2+5}\right)^2\)

\(=\left[\left(m+1\right)+\sqrt{m^2+5}\right]^2+\left[\left(m+1\right)-\sqrt{m^2+5}\right]^2\)

\(=\left(m+1\right)^2+2\left(m+1\right)\sqrt{m^2+5}+m^2+5+\left(m+1\right)^2-2\left(m+1\right)\sqrt{m^2+5}+m^2+5\)

\(=2\left(m+1\right)^2+2m^2+10\)

\(=2\left(m^2+2m+1\right)+2m^2+10\)

\(=2m^2+4m+2+2m^2+10=4m^2+4m+12\)

3. Em mới lớp 8 nên chưa học Min Max mấy dạng này chị thông cảm :(((((((((

26 tháng 2 2021

à xin phép em sửa một tí :))

1. ... = 4m2 + 20

Dễ nhận thấy Δ ≥ 20 > 0 ∀ m

hay phương trình luôn có hai nghiệm phân biệt với mọi m ( đpcm )

2. Vì phương trình luôn có hai nghiệm phân biệt nên hai nghiệm đó luôn viết được dưới dạng : ...

em quên nhìn cái " luôn có hai nghiệm phân biệt " sorry chị :(

23 tháng 3 2017

a/ \(x^2-mx+m-5\left(1\right)\)

( a = 1; b = -m; c = m - 5 )

\(\Delta=b^2-4ac\)

    \(=\left(-m\right)^2-4.1.\left(m-5\right)\)

    \(=m^2-4m+20\)

     \(=m^2-4m+2^2-2^2+20\)

     \(=\left(m-2\right)^2+16>0\forall m\)

Vậy pt luôn có 2 nghiệm pb với mọi m

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=m\\P=x_1x_2=\frac{c}{a}=m-5\end{cases}}\)

Ta có: \(A=x_1^2+x_2^2\)

              \(=S^2-2P\)

               \(=m^2-2\left(m-5\right)\)

                \(=m^2-2m+10\)

                 \(=m^2-2m+1^2-1^2+10\)

                 \(=\left(m-1\right)^2+9\ge9\)

Vậy \(MinA=9\Leftrightarrow\left(m-1\right)^2=0\Leftrightarrow m=0\)

20 tháng 3 2021

a)\(\Delta\)=(2m+3)^2-4.(m^2-1)

        =12m+13

=>Phương trình có 2 nghiệm phân biệt<=>\(\Delta\ge0\)

Hay 12m+13>_0

<=>m>_-13/12

b)Vì phương trình có nghiệm x1=1 nên thay x=1 vào phương trình ta có

1^2-(2m+3)1+m^2-1=0

<=>m^2-2m-3=0

<=>m=-1 hoặc m=3

Áp dụng hệ thức Vi-ét ta có

x1.x2=m^2-1

=>x2=m^2-1

+)m=-1=>x2=0

+)m=3=>x2=8

c)Theo câu a ta có 

Phương trình có 2 nghiệm phân biệt<=>m>_-13/12

Áp dụng hệ thức Vi-ét ta có

x1+x2=2m+3 và x1.x2=m^2-1 (1)

Đặt A= x1^2+x2^2=(x1+x2)^2-2.x1.x2

Thay (1) vào A ta có

A=(2m+3)^2-2(m^2-1)

=4m^2+12m+11

=(2m+3)^2+2>_2 Hay GTNN của x1^2+x2^2 là 2

Dấu "=" xảy ra <=>2m+3=0<=>m=-3/2

d)Câu này dễ b tự lm nha

14 tháng 6 2015

2x(mx-4)-x2+6=0 <=> x2(1-2m)+8x-6=0

đen-ta-phẩy=42-(1-2m)(-6)=22-12m

pt vo nghiệm khi :22-12m<0 <=>m>11/6 

vậy,mmin=2(m thuộc Z)